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Abstract
The fiber-size effects on the value of the homogenized transverse stress leading to the onset of
crack initiation at the fiber-matrix interface predicted by the cohesive zone model and by the
finite fracture mechanics theory are herein compared and discussed. The results show a good
agreement except for the limit cases corresponding to small or very large fibers. The causes for
the observed differences are analyzed and explained by means of simplified asymptotic models.

1. Introduction

Fiber-matrix debonding under transverse tension has been studied for decades due to its re-
sponsibility in the failure mechanism known as inter-fiber or matrix failure in composites. It is
well known, see e.g. [1], that this failure mechanism starts with small cracks at the fiber-matrix
interface or near it. Subsequently these cracks grow along the interface to finally kink out the
interface toward the matrix, coalescing with other cracks. The first part of the process, the crack
initiation at the fiber-matrix interface has been studied recently from the point of view of several
theoretical and computational approaches, see e.g. [2–5]. One of the most interesting results
found by these analyses is the fiber-size effect on the critical transverse tension necessary for
the crack initiation at the fiber-matrix interface.

This work aims at comparing the fiber-size effect predicted by two models which have been
recently proposed to study the problem of crack initiation at the fiber-matrix interface. The first
model [2] assumes that the interface behavior can be approximated by a cohesive law which is
very common in models dealing with crack initiation. The second model [3] is based on the
coupled criterion [6] of the finite fracture mechanics [7, 8] which predicts that a crack of finite
extension appears abruptly when the following two conditions are fulfilled: i) the stresses along
the future crack surface exceeds a critical value and ii) the onset of the crack is energetically
allowed.

As an example, both models are applied to the composite studied in [2] and the results obtained
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Young’s modulus (GPa), Ei Poisson’s ratio. νi

fiber (f) 340 0.18
matrix (m) 60 0.3

Table 1. Elastic properties of the composite.

are compared. Both constituents, fiber (f) and matrix (m), are assumed to be linear elastic and
isotropic materials with the elastic properties shown in Table 1.

First, the formulation of each model is described in Section 2 including all the parameters
necessary to set the models. The results obtained by the two formulations are presented and
compared in Section 3. Finally the results of the comparison are discussed in Section 4 giving
an interpretation to the asymptotic behavior found for large and small fibers.

2. Models

This section describes briefly the aforementioned models subject of the study with a special
emphasis on the characteristics and the parameters which are shared by the two models. In this
sense the model based on the coupled criterion proposed in [3] is slightly modified to be more
coherent with the cohesive law used in [2].

2.1. Cohesive zone model

Cohesive zone models (CZM) are widely used to approximate the progressive nonlinear be-
havior of the fracture process by assuming a cohesive law of separation between the fracture
surfaces [9]. CZM enable to avoid two classic problems of the linear elastic fracture mechan-
ics: i) CZM avoid the stress singularity at the crack tip and ii) CZM are able to predict crack
initiation. In the model described here, this is used to simulate the progressive debonding at the
fiber-matrix interface.

The problem is studied by employing a plane strain model in the plane perpendicular to the
fiber axis. The unit cell is represented in Figure 1(a): a circular inclusion with radius a corre-
sponding to the fiber is surrounded by a square with side b corresponding to the matrix. The
simulations are carried out for several values of the radius. In order to avoid the influence of
the volumetric fraction v, the ratio b/a = 4.18 which corresponds to v = 18% is fixed for all
the simulations, see [10] for a discussion on the influence of v. A normal displacement δ and
vanishing shear stresses are prescribed at the two vertical external boundaries of the unit cell,
whereas the horizontal external boundaries are free. The value of δ is increased monotonically.
A homogenized longitudinal strain ε1 is defined as,

ε1 =
2δ
b

(1)

Analogously, a homogenized stress σ1 is defined as the mean value of the normal stresses at the
external boundary where the displacement δ is prescribed.

The interface behavior is modeled by means of the cohesive law proposed in [11]. According
to this law, the normal σ and shear τ interface stresses are functions of the relative normal gN
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(a) (b)

Figure 1. Schematic of the CZM simulation: (a) geometry and boundary conditions and (b) mesh

and tangential gT displacements at the interface,

σ = σc
gN

lNc
P(λ) (2a)

τ = τc
gT

lTc
P(λ) (2b)

with

P(λ) =


27
4

(1 − λ)2 , for 0 ≤ λ ≤ 1

0, otherwise
and λ =

√(
gN

lNc

)2

+

(
gT

lTc

)2

. (3)

where σc and τc are respectively the interface tensile and shear strengths. lNc and lTc are the
critical relative normal and tangential displacements respectively. In addition, gN ≥ 0 is forced
to avoid interpenetrations along the interface. Figure 2 shows the shape of this cohesive law.
Observe the great interaction between the modes prescribed by this cohesive law. For the sake
of illustration the next values are taken: σc = τc = 300 MPa and lNc = lTc = 0.03 µm.

The resulting nonlinear problem presented in Figure 1(a) is solved numerically by employing
the finite element (FE) code FEAP. The model is discretized using standard 2D plane strain el-
ements with quadratic shape functions, see Figure 1(b). The curvilinear interface is discretized
applying the virtual node technique [12, 13]. The kinematic variables gN and gT are determined
using a node-to-segment strategy. Depending on the sign of gN, an automatic switching proce-
dure is adopted to change between contact and cohesive model for the normal direction at the
interface. In the case of negative gN, a penalty formulation is implemented to enforce gN ≥ 0.

2.2. Finite fracture mechanics: coupled criterion

The coupled criterion [6], proposed in the context of the finite fracture mechanics (FFM) [7, 8],
is based on two key ideas. The first is common to all the approaches in FFM: a crack onset of a
finite extension is predicted. The second is the assumption referred to as Leguillon’s hypothesis:
the crack onset requires the simultaneous fulfillment of a stress and an energy criterion.
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(b) Tangential cohesive stresses

Figure 2. Tvergaard CZM law used to describe the progressive debonding process of the fiber-matrix interface.

The two linear elastic states studied in the FFM model proposed in [3] are shown in Figure 3.
Similarly to the model presented in previous section, a plane strain analysis in the plane per-
pendicular to the fiber axis is employed. Thus, a circular inclusion with radius a surrounded
by an infinite matrix is modeled. Note that, on the contrary to the CZM, the matrix here is
unbounded. The reason is that this enables to build a model exclusively based on analytical so-
lutions which are available in the literature for an infinite matrix. This difference between both
models is not supposed to introduce a relevant disagreement in the results as shown in [10]. A
remote tension σ1 is applied. According to the FFM model, the fiber-matrix interface is ini-
tially perfectly bonded. σ1 is monotonically increased up to a critical value σ1c for which both
criteria studied later on are fulfilled. Then, a crack of a finite extension with polar semiangle ∆θ
appears abruptly, see Figure 3(b). In what follows, the condition imposed by both criteria for
this particular problem is briefly developed.

(a) (b)

Figure 3. Schematic of the situation assumed by the FFM model (a) before and (b) after the interface crack onset.

The stress criterion employed imposes that the stresses at the points of the interface where the
crack will appear has to be equal or larger than a critical value. The model in [3] utilized a
tensile stress criterion based exclusively on the normal stresses. However, due to the influence
of the shear stresses in the cohesive law, a Mohr-Coulomb stress criterion is proposed for this
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comparison. Thus, the stress criterion writes as

σeq(θ) = σ(θ) +
τ(θ)
τc/σc

≥ σc, ∀θ ∈ [0,∆θ], (4)

where θ is the polar angle at the interface and σ(θ) and τ(θ) are, respectively, the normal and
shear interface stresses prior to the crack onset, see Figure 3(a). An analytical solution for σ(θ)
and τ(θ) is available in [14]. Taking into account that σ(θ) and τ(θ) are proportional to σ1 and
under the assumption that the pole θ = 0◦ is always included in the onset, the stress condition
in (4) can be rewritten as,

σ1

σc
≥ s(∆θ, α, β, τc/σc) (5)

where the function s is analytical and can be obtained from the expressions of σ(θ) and τ(θ),
see [10]. α and β are the Dundurs bimaterial elastic parameters, see [3] for their expressions.

The energy criterion is based on an incremental energetic balance. Assuming a quasi-static
initial state, the energetic balance can be written as,

−∆Π ≥ ∆Γ (6)

where ∆Π is the change in elastic potential energy and ∆Γ is the dissipated energy during the
fracture process. ∆Π can be approximated by the integration of the energy release rate G since
G = −dΠ/2adθ. An analytical expression for G was obtained in [15] and can be written as
G(θd, σ1, a, Ef, νf, Em, νm) = σ2

1aĜ(θd, α, β)/E∗, see [3] for an expression of the dimensionless
energy release rate Ĝ, E∗ is the harmonic mean of the effective Young’s moduli. Regarding
to ∆Γ, it is approximated in [3] by the integration of the interface fracture toughness which
depends on the fracture mode mixity. In the CZM, σc = τc and lNc = lTc which corresponds to
a fracture toughness independent of the mixity as demonstrated in [10]. In order to be coherent
with the CZM employed, the dissipated energy is directly approximated by ∆Γ = G1c2a∆θ
where G1c is the interface fracture toughness in pure mode 1. Finally, the energetic balance in
(6) can be rewritten in an analogous manner to the stress criterion as,

σ1

σc
≥

√
G1cE∗

σ2
ca

g(∆θ, α, β) (7)

where g(∆θ, α, β) = ∆θ/
∫ ∆θ

0
Ĝ(θd)dθd.

Once the expressions of the conditions corresponding to the two criteria are known, Leguillon’s
hypothesis postulates that the critical remote stress σ1c is given by the minimum value of σ1

fulfilling both criteria. Hence,

σ1c

σc
= min

∆θ∈[0◦,90◦]

max

s(∆θ, α, β, τc/σc),

√
G1cE∗

σ2
ca

g(∆θ, α, β)


 . (8)

where the values of all the parameters have been defined except for the value for G1c, which can
be obtained by integrating the cohesive law giving G1c = 5.0625 J/m2, see [10].
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3. Results

The nonlinear model with CZM is solved for several values of the fiber radius. The stress-
strain curves obtained from the simulations show that for large fibers, a maximum for σ1 is
observed leading to a snap-back instability, see [10] for a detailed exposition of the curves
and a subsequent discussion. The value of this maximum is identified with the critical value
σ1c. However, below a certain value of the fiber radius, the stress-strain curves do not have a
maximum but they have a change of tendency in the form of an inflection point which is taken
as reference for the value of σ1c.

In the case of the FFM model, a curve of σ1c as a function of a is calculated through the
expression (8) for a sufficiently wide range of fiber radii.

The results predicted for σ1c for each model are represented in Figure 4. The threshold value
for the fiber radius separating the results of the CZM corresponding to a maximum or an in-
flection point on the stress-strain curve is indicated. For FFM, the solid line corresponds to
the expression given by (8). Observe that two horizontal asymptotes as dashed lines have been
represented for the FFM model in the case of large fibers. The upper one corresponds to the
asymptote of the expression (8). The lower one is calculated by relaxing the hypothesis of crack
onset including θ = 0◦. As demonstrated in [3], the stress criterion governs the asymptote for
large fibers. Since the Mohr-Coulomb criterion used here predicts that the most critical point is
not situated at θ = 0◦, the rigorous asymptote is the lower one, see [10] for a detailed discussion.

Figure 4. Comparison of the results predicted for the critical tension σ1c by the CZM and the coupled criterion of
the FFM as a function of the fiber radius a.

4. Discussion

Figure 4 shows a moderate agreement between the results predicted by CZM and FFM. This
agreement is better for large and medium fibers than for small fibers where the values diverge
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considerably. The difference in the agreement and tendency for large and small fibers can be
explained by asymptotic models briefly presented in the following, see [10] for a full discussion.

For large fibers, σ1c in the FFM model is governed by the stress criterion as has been highlighted
by several authors, see e.g. [3]. In the case of CZM, when the fiber radius increases, the stiffness
of the cohesive elements increases with respect to the global stiffness of fiber and matrix as
shown in [10]. As a consequence, the stress solution in CZM tends to the solution given by
a perfectly bonded interface, i.e. the solution used in the FFM for the evaluation of the stress
criterion. This explains why the agreement between models is excellent for large fibers. In
addition, since the stress solution of the asymptotic model is independent of the fiber radius
(with v fixed), the results tend to a horizontal asymptote.

For small fibers, the FFM model is governed by the energy criterion which predicts σ1c is
proportional to 1/

√
a [3], which corresponds to a linear behavior in Figure 4. The tendency of

the CZM results can be interpreted with an asymptotic model analogous to that used previously
for large fibers. When the fiber radius decreases, the relative stiffness of the cohesive elements
with respect to the fiber and matrix stiffness decreases. In the limit, the model tends to have
the stresses and displacements of a model with the fiber-matrix interface totally debonded [10].
Thus, the relative normal and tangential displacements at the interface scale with the fiber radius
whereas the critical values for these relative displacements lNc and lTc do not. As a consequence,
σ1c ∝ 1/a which corresponds to a quadratic curve in Figure 4. This means why the two models
diverge necessarily for this limit.

5. Concluding remarks

A comparison has been carried out between the fiber-size effect predicted by a cohesive zone
model and a finite fracture mechanics model for the problem of crack initiation at the fiber-
matrix interface under transverse tension.

A good agreement between the two approaches has been noticed for a wide range of fiber
diameters. The differences in the models predictions for very small and very large fibers is
reasonable and the reasons for that have been interpreted according to two simplified asymptotic
solutions.
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