
ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

CRACK ONSET AND PROPAGATION ALONG FIBRE-MATRIX
ELASTIC INTERFACES UNDER BIAXIAL LOADING USING FINITE

FRACTURE MECHANICS
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Abstract
A fracture criterion able to predict the failure loads producing crack onset and propagation
along weak interfaces between solids is presented. The procedure is based on the Linear
Elastic-(Perfectly) Brittle Interface Model (LEBIM) combined with a Finite Fracture Mechanics
(FFM) approach. The procedure imposes the simultaneous fulfillment of two criteria to produce
crack onset and/or growth: for the incremental energy release rate due to the debond originated
between the solids and for the stresses at the potential crack path before the crack onset. Each
criterion, by itself, represents a necessary but not a sufficient condition to produce the debond.
The procedure is implemented in a 2D Boundary Element Method (BEM) code. The interface
between the solids is modelled by a continuum spring distribution. This approach offers an
improvement in relation to other methods already existing, which is an adequate characteriza-
tion of the interface stiffness. The present approach also allows to model a debond in mixed
fracture mode, thus onset and propagation of a debond at a fibre–matrix interface under biaxial
transversal loads can be studied.

1. Introduction

Debonds among the fibres and matrix in a unidirectional composite laminate under loads trans-
verse to the fibres is a frequent failure mechanism and as such it has been deeply and extensively
studied by many authors. This is the reason why an adequate modelling of the interface becomes
an important issue, when the failure in a composite is studied. An extensive review of works
that studied this problem can be found in [1, 2] and references therein. Following the work of
several authors, see [2, 3, 4, 5], in the present work the interface is modelled as continuum linear
elastic-brittle spring distribution. Normal and shear stresses in the undamaged springs are pro-
portional to relative normal and tangential displacements, respectively. The model includes a
brittle failure criterion, as in [2, 4, 5]. This approach is usually referred to as the Linear Elastic-
(Perfectly) Brittle Interface Model (LEBIM). The aim of the present work is to develop and
implement in a computational code a new LEBIM formulation able to predict debond onset and
propagation at an interface of an isolated fibre–matrix system under remote transverse loads.
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The novelty introduced in the LEBIM is based on recent works [6, 7], where a coupled stress
and energy criterion of the Finite Fracture Mechanics (FFM) is applied to the present problem
but considering a perfect fibre-matrix interface, and work [8], where the coupled criterion of
FFM is applied in the LEBIM in a semianalytical study.

2. Finite Fracture Mechanics applied to Linear Elastic-Brittle Interface

LEBIM, originally proposed in [2, 4] is a model able to predict interface debonds between two
solids. Nevertheless, LEBIM may not be able to characterize adequately a problem with a very
stiff interface due to the fact that the fracture toughness, interface stiffness and the maximum
critical stress are directly related in the original LEBIM criterion. As mentioned above, Mantič
and Garcı́a [6, 7] and Cornetti et al. [8] applied the FFM concepts to perfect and linear elastic in-
terfaces, respectively, and following these works the original LEBIM proposal can be improved.
The present novel approach is based on the coupled criterion of stress and incremental energy
release rate, each of them representing a necessary but not sufficient condition to produce crack
onset and propagation.

In the present model the interface is characterized by a spring distribution whose normal and
shear stiffnesses are defined as kn and kt, respectively. So the normal and shear stresses σ and
τ, at a point x on an undamaged part of the interface are proportional to the relative normal and
tangential displacements (δn and δt):

σ = knδn, and τ = ktδt. (1)

Therefore, the energy stored in a spring (per unit area) and which can be released is given as

G = GI + GII , where GI =
〈σ〉2+
2kn

and GII =
τ2

2kt
. (2)

The stress and energy based fracture-mode-mixity angles are defined, respectively, as

tanψσ =
τ

σ
, and tan2 ψG =

GII

GI
=

kn

kt
tan2 ψσ (for σ ≥ 0). (3)

In order to produce a crack onset and propagation the following incremental energy criterion
must be fulfilled: ∫ ∆a

0
G(a) da ≥

∫ ∆a

0
Gc(ψ(a)) da, (4)

where G(a) is the Energy Release Rate (ERR) associated to the crack tip at the position x = a,
essentially it equals the energy (per unit area) stored at the spring located at the crack tip,
cf. [3, 9], and is defined by (2) using the tractions σ(a) and τ(a) at the crack tip. Gc(ψ(a))
gives the fracture toughness (fracture energy) associated to the crack tip at the position x = a.
Function Gc(ψ) is usually defined by a phenomenological law, as, e.g., the following one [10]:

Gc(ψG) = GIc(1 + tan2(1 − λ)ψG), (5)

with GIc denoting the fracture toughness in pure mode I, λ is the fracture mode sensitivity
parameter (0.2 ≤ λ ≤ 0.3 is the typical range for interfaces with moderately strong fracture
mode dependence).
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Besides, for crack onset and propagation a stress criterion must be fulfilled too, the following
one being used in the present work:

min
0≤x≤∆a

t(x)
tc(ψ(x))

≥ 1, (6)

where the traction vector modulus at a point x and its critical value are,

t(x) =
√
σ(x)2 + τ(x)2 and tc(ψ(x)) =

√
σc(ψ(x))2 + τc(ψ(x))2. (7)

In the present work, following [2, 5], the energy fracture-mode-mixity angle is used defining

σc(ψG) = σ̄c

√
1 + tan2[(1 − λ)ψG] cosψG and τc(ψG) =

√
kt

kn
σ̄c

√
1 + tan2[(1 − λ)ψG] sinψG,

(8)
with σ̄c being the critical stress for pure mode I. The present problem is governed by the fol-
lowing dimensionless parameter defined in [8]:

µ =
2knGIc

σ̄2
c

. (9)

 

   

 

 

 

 

 

  

 

  
                                       

 
                              
 
 
 

Figure 1. FFM+LEBIM law for pure mode II.

According to Fig. 1, µ = σ2
max/σ̄

2
c , with σmax and σ̄c being, respectively, the maximum and crit-

ical stresses associated to the energy and stress criteria. When µ = 1, the solution of the present
model should revert to the solution of the original LEBIM. For increasing µ, the interface be-
comes stiffer, so µ → ∞ leads to the perfect interface. As follows from the above, fracture
toughness, strength and stiffness of the interface are independent in the present FFM+LEBIM
model, in opposite to the original LEBIM, where these quantities are related by an equation.

3. Cylindrical inclusion under under biaxial transverse loads

A plane strain problem of an infinite fibre embedded in a matrix is considered, an undamaged
interface is considered initially and the fibre-matrix system is subjected to a biaxial remote
loading. Fibre radius a and 2H side square matrix with H/a = 200/3 are used, see Fig. 2.

Both the inclusion and matrix are considered to be isotropic linear elastic materials, whose
characteristics are presented in Table 1. The value of kn given in Table 1 corresponds to µ = 1.
For larger values of µ, kn increases proportionally. The applied remote loads, σ∞x and σ∞y with
σ∞x ≥ σ

∞
y , are shown in Figure 2.
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Ef(GPa) νf Em(GPa) νm GIc(Jm−2) σ̄c(MPa) kn(MPa/µm) kt/kn

Glass-Epoxy 70.8 0.22 2.79 0.33 2 90 2025 0.25

Table 1. Material and interface properties (kn for µ = 1)

The following general load-biaxiality parameter is used to represent the biaxility relation be-
tween the remote loads:

χ =
σ∞x + σ∞y

2max{
∣∣∣σ∞x ∣∣∣ , ∣∣∣σ∞y ∣∣∣} , −1 ≤ χ ≤ 1, (10)

To solve this problem a Boundary Element Method (BEM) code is used. The code is a modifi-
cation of the code developed in [2, 4, 5]. A uniform mesh of linear boundary elements is used
to discretize the fibre-matrix interface, each element corresponding to a polar angle 0.1◦.
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Figure 2. Inclusion problem configuration under remote biaxial transverse tension (a) without and (b) with a
partial debond.

The position where debond onset initiates is defined by the polar angle θo. The debond length
is denoted by the polar angle θd, see Fig. 2(b). It should be noted that debond growth is not
always symmetric, thus θo angle may not be in the centre of the arc defined by θd in some stages
of the debond growth.

In each step, of the present crack advancing procedure, the intersection point of the curves
representing the stress and energy criteria defines the critical remote stress σ∞c > 0 and the
length (polar angle) of crack tip advance ∆θ. Then, a next step of the procedure begins. The
first two steps of this crack advancing procedure are depicted in Fig. 3(a), for µ =4 and χ =0.5
(uniaxial case), where it is seen how the curves of stress and energy criteria advance with each
∆θi, subscript i representing the step number.

The predicted evolution of the onset and propagation of a crack along the fibre-matrix interface
for χ =0.5 is shown in Fig. 3(b), for different interface stiffnesses, µ =2 and 4. In this graph
the results are compared with the original LEBIM with µ =1. In the first steps for µ greater

4



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

(a)

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

110

120

d (º)

σ
 (M

Pa
)

 

 

Stress criterion ∆θ
1

(º)

Energy criterion ∆θ
1

(º)

Stress criterion ∆θ
2

(º)

Energy criterion ∆θ
2

(º)

First step

Second step

(b)

0 25 50 75 100 125 150
20

25

30

35

40

45

50

55

60

65

d(º)

σ 
(M

Pa
)

 

 

FFM+LEBIM for µ=4
FFM+LEBIM for µ=2
original LEBIM, µ=1

Figure 3. (a) First two steps of the present crack advancing procedure for a cylindrical inclusion embedded in a
matrix under a transverse tension for µ =4 and χ =0.5 (uniaxial case).(b) Applied remote stress with respect to
semidebond angle for different µ values with χ =0.5 (uniaxial case).

than one, the jumps due to the intersection of the stress and energy criteria curves are clearly
observed, but when the solution arrives to the minimal remote stress, the criteria curves do not
intersect, and the minimum remote stress that verifies both criteria is typically given by the
minimum of the energy criterion curve.

Fig. 3(b) shows that the results obtained by the FFM+LEBIM do not vary significantly with
respect to the results obtained by the original LEBIM, even for larger values of µ. In particular,
the maximum critical load and the final debond angle achieved under load control present only
small variations.
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Figure 4. Failure curves for a glass fibre embedded in an epoxy large matrix under biaxial transverse loads.
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χ =0.75 χ =0.5 χ =0 χ =-0.25 χ =-0.5
µ =1 0.00◦ 0.00◦ 0.00◦ 0.00◦ 13.20◦

µ =2 0.00◦ 0.00◦ 0.00◦ 6.00◦ 17.85◦

µ =4 0.00◦ 0.00◦ 9.15◦ 16.05◦ 20.55◦

Table 2. Debond onset angle θo for different µ and χ
.

Fig. 4 shows the failure curve obtained for the normalized remote biaxial loads which cause a
debond at an initially undamaged inclusion-matrix interface with µ = 4. The curve is compared
with the analytical curve obtained by LEBIM with µ = 1 in [5] using Gao’s elastic solution
[11]. Surprisingly only small differences are observed in the results when the interface stiffness
is increased, while the tendencies in both curves are the same. The failure curves show that a
secondary compressive load makes easier the debond onset originated by a primary tensional
load.

In Table 2, the position where the debond onset initiates (angle θo) for different µ and χ values
is presented. It can be observed that initially the onset position is symmetrical (θo = 0◦). Never-
theless, when the interface stiffness increases (µ value increases) and a secondary compressive
far field load becomes larger, the change of position becomes more evident too. This change in
position was also observed in previous works by Correa et al. [12] and Mantič et al. [5], where
the influence of a secondary transverse load in the debond onset and propagation between fibre
and matrix was also studied.

4. Conclusions

A new computational procedure combining the FFM and LEBIM has been developed. It opens
new possibilities to study the onset and propagation of cracks along interfaces and adhesive lay-
ers using realistic values of strength, fracture toughness and in particular layer stiffness, which
can be significantly higher than in the original LEBIM (corresponding to µ = 1). It is inter-
esting to observe that for the present fibre-matrix system the predictions of the crack onset and
propagation obtained by FFM and LEBIM differ only slightly from those obtained by the orig-
inal LEBIM, which indicates only a moderate dependence of these predictions on the interface
stiffness. The failure curves obtained show that the presence of a secondary compressive load
makes easier the debond onset.
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