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Abstract  
The influence of a secondary transverse load (tension or compression), perpendicular to the 
transverse compression nominally responsible for the failure, on the inter-fibre failure is 
studied at micromechanical level. The problem is analysed by means of the Boundary Element 
Method and under the light of Interfacial Fracture Mechanics. The results obtained show that 
the presence of a secondary tension accelerates the generation of failure whereas a 
secondary compression inhibits it. 

 
 

1. Introduction  
 
Many matrix/inter-fibre failure criteria assume that the failure occurring at a plane is governed 
by the components of the stress vector associated to that plane. In this work, an analysis of the 
influence of an out of failure plane stress component, i.e. secondary load (tension or 
compression), on the generation of the damage dominated by a transverse compression is 
carried out.  
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Figure 1. Initial stages of inter-fibre failure under uniaxial compression.  
 
The inter-fibre failure under uniaxial compression starts with the appearance of small debonds 
at the fibre-matrix interfaces. In accordance with the previous studies of the authors [1,2] the 
initial defects present a non-symmetric morphology consisting in a small ‘bubble’ at the lower 
crack tip and a contact zone at the upper one, see Fig. 1(a). These initial cracks grow unstably 
along the interfaces from their lower crack tips. This stage ends when these cracks reach a 
certain length at the interface, which coincides with the closing of the ‘bubble’, Fig. 1(b). 
From that moment on the growth becomes stable and crack kinking towards the matrix is 
promoted (following an orientation angle, kink , around 53º from the direction perpendicular 

to the load, Fig. 1(c)). 
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The study is performed by means of single-fibre BEM models and Interfacial Fracture 
Mechanics concepts [3] are employed for the analysis of the results. 

 
2. Models 

 
The numerical study has been performed using a tool based on BEM [4], able to consider 
contact between surfaces. Two single-fibre BEM models are used in this analysis. The size of 
the cell is large enough for the fibre to be considered as isolated. The basic model employed is 
shown in Fig. 2(a) and represents the case of a crack which, under the plane strain hypothesis, 
grows along the interface. 
 
To characterize the problem from the Fracture Mechanics point of view, the Energy Release 
Rate (ERR), G , is used. The expression employed, based on [5], for a circular crack that 
propagates from a certain debonding angle,  , Fig. 2a, to    (   ), is: 
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where   is the circumferential coordinate with reference to the 3-axis. rr  and  r  represent, 

respectively, radial and shear stresses along the interface, and ru and u  represent the 

relative displacements of the crack faces. Both modes of fracture, I and II are obviously 
considered in Eq. (1). For this study,   has been taken equal to 0.5º. 
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Figure. 2. Single fibre models: (a) interface crack, and (b) kinked crack in the matrix. 
 
A second model, Fig. 2(b), is employed for the considering of a kinked crack in the matrix. 
The materials chosen for the analysis correspond to a glass fibre-epoxy matrix system whose 
elastic properties are: Pa10792 9 .E m , 330.m  , Pa10087 10 .E f  and 220.f  . 

 
Dimensionless results for G  will be presented. They are obtained, following [6, 7], by 
dividing the values of G  by    aG mm 2

00 81 , where mm  43 , m  is the shear 

modulus of the matrix and 0  is the external applied compression. The fibre radius 

considered is m.a 61057  . 
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3. Failure initiation 
 
The presence of an external secondary load, 33 , acting at the same time as 022   could 

alter the origin of the failure and, thus, the development of the interface crack. The initiation 
of the failure at the interface has been considered in this work to be controlled by the  r  

distribution [8], at the undamaged interface, as was already done in [1]. Then, it is 
fundamental to analyze the influence that the different levels of 33  have on  r  of the 

undamaged interface. Three different values of coefficient n  have been considered: 0, 0.5 and 
1. Based on this the notation employed to distinguish between the different biaxial cases 
follows the scheme: C-nT and C-nC (T=tension, C=compression). 
 
Curves presented in Fig. 3a (C-nT casec) show that their shape and the location of the maxima 
are not altered by the presence of 033  . However, the  r  level becomes higher as n 

increases. Thus, a possible first debond would still be located at 315º or225º,135º  ,º45 , 

as occurred in the C-0 case, and require a lower value of the external load, 0 , as n increases. 

 
Referring to the C-nC cases, Fig. 3b, it can be observed that although the qualitative evolution 
of  r  seems not to be affected by the increasing presence of 033  , its level decreases as 

n  increases. In view of this observation it seems feasible that the shear stresses cause damage 
at the interface whenever coefficient n  does not reach its limit value 1n , although the 
required external load 0  needs to be increased as n  is. The first debonds would then be 

located at 315ºor225º,135º ,º45 .  
 
Based on the former evidence, an initial debond at the interface of 10º length at 135º  will 
be assumed for the study of the interface crack, both for the C-nC cases and the C-nT cases. 
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Figure 3.  r  distribution at the undamaged interface for (a) C-nT cases and (b) C-nC cases.  

 
4. Interface crack 
 
The evolution of the first debond at the interface is studied by means of the BEM model 
shown in Fig. 2a and its growth evaluated in terms of the Energy Release Rate, G , Eq. (1). 
 
4.1. Compression-tension biaxial case 
 
The evolution of the Energy Release Rate associated to the lower tip of the interface crack has 
been calculated for three different C-nT cases: 1  and0.50.25,n , and compared with the 
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uniaxial case, C-0, Fig. 4(a). It is necessary to remark the higher level of the obtained G  
evolution as n increases. This difference is more noticeable for large debonds, almost reaching 
an order of difference between C-0 and C-T cases for the largest debond considered. This 
indicates that the propagation of the initial debond would require a lower level of 0  as n  

increases. 
 
The prediction of growth of the interface crack is made by comparing G  with its 
corresponding critical value, cG  [9]. G - cG  comparisons for the cases C-0 and C-0.1T (taken 

as representative of all C-nT cases) are plotted in Fig. 4(b). A value of 0.25 has been chosen 
for  , and cG1  has been taken as the value that makes G  and cG coincide for the first 

debonding angle, º10d  in this case. This criterion for the election of cG1  can be applied 

once a scaled representation of the G  curves, that makes them to coincide at ºd 10 , has 

been implemented.  
 
The results presented in Fig. 4(b) make it possible to predict that the range of unstable growth 
of the interface crack widens as 033  increases, even reaching a significant difference, for 

high values of n coefficient (not represented in the figure), with respect to the growth at the 
interface in the case of uniaxial compression. In particular, it can be checked in the Figure that 
Mode I does not disappear until the lower crack tip reaches a position of 212º  (for which 
a physically relevant contact zone next to the lower crack tip is detected). Taking into account 
that the difference between the evolutions of G  and cG  will be reduced by the presumably 
presence of friction at the contact zone, whose effect will become more significant as the 
contact zone increases, it is then possible to predict an unstable growth of the crack tip, at 
least up to 212º . 
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Figure 4. (a) G  evolution of the lower interface crack tip (C-nT cases). (b) IG , IIG  and G  evolutions of the 

lower interface crack tip (C-0.1T case). 
 
4.2. Compression-compression biaxial case 
 
In order to evaluate the effect of 033  , G  at the lower crack tip is calculated in this section 

for the C-0.5C case and compared with that obtained for the C-0 case [1], Fig. 5(a). The 
results lead to the conclusion that it would be necessary to apply a higher external load, 0 , in 

the C-0.5C case than in the uniaxial one for the interface crack to propagate. Besides, and 
although not included in the figure, it can be checked that Mode I contribution is minimal 
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versus Mode II one for the C-0.5C case. Thus, 033   would inhibit the progress of this type 

of damage. 
 
Fig. 5(b) contains the G  evolution of the interface crack for different positions of its lower 
tip, C-0.5C case, together with its corresponding  20.Gc  . G  evolution has been scaled in 

order to coincide at its initial point with the value of the uniaxial case, as in the C-nT cases, so 
that cG1  value is the same for both cases, 0n and 50.n  .  

 
The cGG   comparison shown in Fig. 5(b) demonstrates that it would be necessary to apply a 

higher level of external load, 0 , for the initial debond to propagate, or, alternatively, the 

length of the initial debond considered would have to be longer. However, if the propagation 
of the initial defect started, its range of unstable growth would be lower than in the uniaxial 
case. 
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Figure 5. (a) G  evolution at the lower interface crack tip (C-nC cases, n=0, 0.5) (b) cGG   comparison (C-

0.5C case). 
 
5. Growth through the matrix 
 
The stable position reached by the crack at the interface after a period of unstable propagation 
warns about the possible occurrence of a different stage in the mechanism of damage under 
study. Following with the steps already detected for the C-0 case the possibility of kinking 
towards the matrix is analysed next. 
 
The first step of the kinking analysis consists in the study of the circumferential stress around 
the interface crack tip in order to identify the preferential direction of kinking, associated to 
the maximum circumferential stress, max

 , for each position of the interface crack, according 

to the Maximum Circumferential Stress Criterion [11]. In addition, an energetic evaluation of 
the propagation of the crack in the matrix, once kinked, has been carried out. 
 
5.1. Compression-tension biaxial case 
 
The model presented in Fig. 2a has been used for this analysis and the distribution of   has 
been performed for two positions of the lower tip, º204 and º214 , Figs. 6(a) and (b), 
respectively, associated to the C-0.1T case. The first one corresponds to a position within the 
expected range of kinking propagation for the C-0 uniaxial case [2] and the second one is 
located within the range of ending established for the C-0.1T in Fig. 4(b). Three different 
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distances, R , to the crack tip [0.001a, 0.005a, 0.01a] have been considered. The results 
obtained for º204 , Fig. 6(a), conclude in a range of preferential orientation of the crack in 
the matrix,  , corresponding to º630º6  , and º607º5   for º214 . 
 
Once the preferential kinking direction of the interface crack has been calculated it is 
necessary to study the kinking occurrence from an energetic point of view. To this end the 
model shown in Fig. 2(b) has been used to consider, at º214 , the presence of small 
kinked cracks subjected to a C-0.1T loading state. The orientations of these kinked cracks, 
given by kink , cover the range 45º-60º. The results obtained, Fig. 7, point to Mode I 

dominancy in the mG distribution (ERR of the crack in the matrix). It can also be checked that 
mG maintains a fairly constant level within the orientation range considered, thus not clearly 

determining a preferential kinking orientation within the matrix. On the other hand, intG  
(ERR of the interface crack, also included in the Figure) shows pure Mode II character, as 
was already detected in Fig. 4(b), and is lower than mG for all orientations considered.  
 
Finally, based on the relative values of cG  for the interface and the matrix and the different 

character of growth for both possibilities, favourable conditions are found for the kinking of 
the interface crack towards the matrix once it has reached a stable position at the interface. 
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Figure 6.   distribution around the lower crack tip (a) º204  (b) º214 . C-0.1T case. 
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Figure 7. IG , IIG  and G  of the kinked crack following different orientations. ( º214 ). 
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5.2. Compression-compression biaxial case 
 

The maximum circumferential stress distribution is represented in Fig. 8(a) for a position of 
the lower crack tip 176º  (C-0.5C case) and aaaR 0.01and0.005,0.001 . The results 

show that   takes negative values for all orientations towards the matrix considered, which, 

based on the criterion employed, would impede the kinking towards the matrix. As a 
consequence, the crack would be trapped at the interface although showing a limited growth 
in comparison with the uniaxial case. Thus, the progression of the inter-fibre failure in this 
case would be inhibited and the appearance of alternative mechanisms of failure not 
considered in this work might occur.  
 
For the cases with relatively small 033  , kinking would be possible, and thus, the 

mechanism of failure established for the C-0 case would prevail. Moreover, if the 
circumferential stress analysis is repeated for the C-0.1C case, Fig. 8(b), tensions are detected, 
their maxima being located within the range 49º-65º. It should be pointed out that a noticeable 
decrease in the circumferential stress level is detected in this case compared with the uniaxial 
case [2], which would again reduce the possibilities of kinking. 
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Figure 8.   distribution around the lower crack tip for 176º (a) C-0.5C case, (b) C-0.1C case. 

 
6. Conclusions 
 
The first stages of the development of the compression dominated inter-fibre failure under 
biaxial loads have been studied by means of single fibre BEM models. A secondary external 
load has been considered to act simultaneously with the compression nominally responsible 
for the failure, and both cases (tension and compression) have been analysed.  
 
The results obtained show that the presence of a secondary load could alter several aspects of 
the stages already detected for the inter-fibre failure under uniaxial compression, leading to 
the conclusion that the presence of a secondary tension accelerates the generation of failure 
whereas a secondary compression inhibits it. As a consequence, the presence of an out plane 
stress component could affect the development of the failure. Additional details of the work 
can be found in [12]. 
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