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Abstract
Typical analysis of composite laminates do not consider interlaminar stresses, being considered
as negligible in most cases. These stresses are more significant in the case of a curved beam,
where Lekhnitskii’s equations are typically used for their calculation. However, Lekhnitskii’s
equations are only exact in the case of an homogeneous anisotropic material, and composite
laminates are typically composed of orthotropic laminas with different orientations. A novel
calculation method for evaluating stresses in composite curved beams is introduced in this
paper and compared with numerical results to show its accuracy.

1. Introduction

The classical laminate theory (see [1], Chapter 4) lets us to calculate in-plane stresses in a
plane laminate under bending moments and axial forces, interlaminar stresses being considered
negligible. This theory has been applied also to curved beams (see [2]), but the theory is not
capable of calculating interlaminar stresses. However, when the laminate is curved with t ∼ R
(where t is the thickness of the laminate and R the medium radius) interlaminar stresses are
higher and become the main failure cause in many cases.

The exact solution in a plane state of a curved beam under a bending moment and axial and
shear forces was given by Lekhnitskii et al (see [3], Chapter 3) in the case of an anisotropic ho-
mogeneous material. In composite laminates the beam is not homogeneous due to the stacking
sequence and it can be an important factor in the maximum value of the interlaminar stresses.

Previous authors have analysed numerically the curved layered beam, see Wisnom [4], and
developed 2D in-plane numerical methods that calculate also out-plane stresses, as Robbins Jr.
[5].

An analytic model to obtain interlaminar stresses in a curved beam is developed in [6]. That
model is compared in this paper with numerical results to show its accuracy. A curved beam
with constant radius R under a distribution of axial force N(θ), shear force Q(θ) and bending
moment M(θ) is considered as seen in figure 1.
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(a) (b)

Figure 1. (a) Definition of axial and shear forces and bending moment in a curved beam. (b) Definition of the
physical plies and the mathematical laminas.

A cylindrical coordinate system with the radius r and the angle θ in the plane of figure 1 and the
axis z perpendicular to the plane is considered.

The model employed to obtain the radial, circumferential and shear stresses in a composite ma-
terial of Nl plies consists on considering every ply composed of Ml laminas (which are only
a mathematical tool without physical meaning, shown in fig. 1), solving the equilibrium, be-
haviour and compatibility equations for every lamina and taking the limit when Ml → ∞. The
problem is simplified supposing a beam model in each lamina, not considering the shear defor-
mation, what is equivalent to approximate displacements in every lamina by the displacements
obtained in the homogeneous equivalent material.

Moreover, the problem considered is two-dimensional, and applying the beam approximation
in every lamina it becomes a unidimensional problem in each lamina. The unidimensional
behaviour equation relating the deformation εθ and the circumferential stress σθ is given by the
stiffness Qi in the i-th ply: σθ = Qiεθ. This stiffness can be usually approximated applying
plane deformation in z and plane stress along the through-thickness direction r.

The stress distributions obtained under these hypotheses are given by [6]:
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The stiffnesses EA, EI and EV are given by:
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where xi = roi − R, xi−1 = rii − R, roi is the outer radius of the ply i and rii is the inner radius.
The stiffness (EA)i is the equivalent to EA but in a ply instead of the complete beam, given by:

(EA)i = WtlQi (6)

where W is the width of the beam (in the cylinder axis direction), t the thickness of the complete
beam and tl the thickness of a single ply.

The shear τi
rθ and radial σi

r stresses in lamina i depends on the stresses in the lamina i − 1, so it
is necessary to initialize them with a boundary condition given by:

τ0
rθ(ro1, θ) = σ0

r,M(ro1, θ) = σ0
r,N(ro1, θ) = 0 (7)

2. Comparison with Lekhnitskii’s equations

The model can be applied to an homogeneous material considering only one ply, so (EA)i = EA.
In this kind of material Lekhnitskii’s equations (see [3], Chapter 3) can be applied. Typically
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the Lekhnitskii parameter κ =

√
Eθ
Er

in a composite material is between 1 (isotropic material)
and 4.

A comparison between the stresses due to the different efforts obtained from the model applied
in an homogeneous material and from Lekhnitskii’s equations is represented in the figures 2-4,
where a specimen with t = 3 mm and R = 6.5 mm has been chosen.

Figure 2. Stresses due to the bending moment M(θ).

Figure 3. Stresses due to the shear force Q(θ).

Figure 2 shows the radial stresses σr,M (left) and the circumferential stresses σθ,M (right) due to
the bending moment M(θ). Figure 3 shows the shear stresses τrθ due to shear force. Both figures
shows the high accuracy of the model in a homogeneous material with the range of values of κ
considered.

Figure 4 shows the radial stresses σr,N (left) and the circumferential stresses σθ,N (right) due to
axial force. In that case the effect of the variation of κ is higher. As the model does not depend
on the value of κ results are less accurate. It can be seen that the accuracy is higher in the case
of κ = 1.
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Figure 4. Stresses due to the axial force N(θ).

3. Comparison with numerical results

Once model equations have been verified in an homogeneous material composite laminates are
studied comparing them with numerical results.

3.1. Numerical model

The bar has been modelled in a commercial finite elements code (see [7]) as a 2D problem with
shell elements. The load is applied far enough to the interest zone in which stresses are observed
so it does not influence the results. At the opposite side of the curved beam the circumferential
displacements are prescribed.

Figure 5 shows the force and the moment applied in the free end, that correctly calculated let
to obtain the desired stresses in a specific section. If the moment is M = Ph1 the section
θ = 0 is only under shear effort, so stresses due to the shear force are obtained in this section.
If the moment is M = Ph2 stresses due the axial force are observed in θ = π/2. Finally, if
P = 0 stresses due to the bending moment are observed in any section far enough from the load
application point.

Two kind of specimens are considered:

• Specimen 1: Stacking sequence: [45, -45, [90]3, -45, 45, [0]2, [45, -45]2, 0, [45, -45]5]S ,
Ply properties: E11/E22 = 20.22, t = 8.8 mm, R = 15.6 mm.

• Specimen 2: Stacking sequence: [45, 0, -45, 90]3S , Ply properties: E11/E22 = 20.22,
t = 8.8 mm, R = 15.6 mm.

The 90o direction is the cylinder axis direction z and the 0o the circumferential direction θ. The
first specimen has been chosen as it is an example where Lekhnitskii’s equations do not estimate
well the maximum value of the radial stresses. The second specimen has been chosen as it is an
example where Lekhnitskii’s equations do not estimate well the radial failure point.
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Figure 5. Geometry and loads in the numerical model.

3.2. Results

Several results obtained applying the analytic model, Lekhnitskii’s equations and the numerical
model to the previous specimens are represented in figures 6-10.

Figure 6. Specimen 1, stresses due to the bending moment.

Figures 6 and 7 show the stresses due to the bending moment in specimens 1 and 2 respectively,
where the high accuracy of the analytic method over the numerical results is observed. More-
over they show the capacity to get the stacking sequence dependence of the maximum value of
the radial stresses. In specimen 1 the maximum value of the radial stress is a 10% higher that in
the Lekhnitskii distribution

Figure 8 show that shear stresses due to the shear force have a similar distribution shape that the
radial stresses due to the bending moment, and they are more or less as accurate as that.

Finally, figures 9 and 10 show that the stresses due to the axial force are not so accurate com-
pared with the numerical results. The maximum value of the radial stresses in this cases may
have an error even of 100%.
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Figure 7. Specimen 2, stresses due to the bending moment.

Figure 8. Specimen 1 (left) and Specimen 2 (right), stresses due to the shear force.

Figure 9. Specimen 1, stresses due to the axial force.
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Figure 10. Specimen 2, stresses due to the axial force.

4. Concluding remarks

The method developed in [6] lets us to calculate in a very accurate way the circumferential,
radial and shear stresses due to the bending moment and the shear force in a curved beam with
constant radius, and the stresses due to the axial force with a higher error.

Nevertheless, the lack of accuracy in the axial force stresses is not important because when an
axial force in a curved beam exists it causes a bending moment in another section that induces
higher stresses. Therefore the influence of stresses due to the axial force in the failure load is
relatively low.

The method is also a powerful tool that allows a stacking sequence optimization which cannot
be done with Lekhnitskii’s equations.

References

[1] R.M. Jones. Mechanics of Composite Materials. Mc Graw-Hill, 1975.

[2] K.C. Lin and C.M. Hsieh. The closed form general solutions of 2-D curved laminated
beams of variable curvatures. Composite Structures, 79(2007):606–618, 2007.

[3] S.G. Lekhnitskii, S.W. Tsai, and T. Cheron. Anisotropic Plates. Gordon and Breach Science
Publishers, 1968.

[4] M.R. Wisnom. 3-D finite element analysis of curved beams in bending. Journal of Com-
posite Materials, 30(11):1178–1190, 1996.

[5] D.H. Robbins Jr. and J.N. Reddy. Modelling of thick composites using a layerwise laminate
theory. International Journal for Numerical Methods in Engineering, 36(4):655–677, 1993.
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