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Abstract

In this work, an estimation of the reinforcement facfoof the Halpin-Tsai equations used
to calculate the transverse gtiess k is provided. A better estimation of the valde= 2
originally suggested by Halpin and Tsai is given through addinite element analyses that
consider randomly distributed unidirectional fibers foffdrent volume fractions. The analysis
overcomes the original hypothesis of a square array digtidn of fibers in the transverse
plane. It is concluded that a value ¢f= 1.5 is a better estimation for the usual volume
fractions found in practice for a unidirectional lamina db&r reinforced composites.

1. Introduction

The Halpin-Tsai equations [1] are widely used to calculdaste properties of dierent con-
figurations of composite materials. Among these properteg of the most relevant is the
transverse dfinessE, of a unidirectional lamina with oriented continuous fibets.is well
known that approaches based on a strength of materialsssatyderestimate the true value of
E,, leading to a lower bound d&, (Reuss boundary) [2]. In the past a large number of models
have been proposed in the literature to obtain more accestiteations foE, and other elastic
constants, many based in formal approaches of the theotgsifaty (see the excellent reviews

in [1, 2]). These models account for the matrix-dominatéa on the homogenized valig

for a lamina, such as the Ekvall model [2] that considers tiagitl stress state in the matrix
due to fiber restraint.

It has been extensively verified that the Halpin-Tsai (H-@)i&ions are a good practical way
for calculatingE,, using the originally proposed value of the reinforcemeastdré = 2. The
wide application of the H-T equations heavily relies on tis&nplicity, which is desirable for
design purposes. The reinforcement factemries with the geometry of the reinforcement, its
distribution and the volume fraction. Originally, the valofé for oriented continuous fibers was
derived by Halpin and Tsai from correlation with analytisalutions that assume an idealized
geometrical distribution or pattern (e.g. Adams and Dowért®on for a square array of fibers
solved by a finite-dference scheme). Some approximate equations éoe also given in the
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literature to modify the value @f for high volume fractions, as recalled in Section 2.

A question arises about the influence of a random distribudfdhe reinforcement in the trans-
verse plane 2-3, which is much more realistic than a merersqauraangement. Sincetakes
into account the féect of the geometry and distribution of the reinforcemeng expected that
this random distribution may have a non negligibfeeet. In this work, we carry out a series
of parametric finite element analysis withfidgrent random distributions of fibers of circular
cross section to quantify the influence of the random distigin. Several volume fractions are
considered and the diameter of the fiber cross section isyalssd randomly between the usual
ranges.

An inverse analysis enables the estimatior¥ dor different volume fractions, leading to the
conclusion that a more convenient valuea about 1.5 for typical volume fractions instead of
the typical value of 2.0 derived from an idealized squararsgement and usually found in the
literature. An important deviation is also found for low amdh volume fractions.

2. Calculation of E; using the Halpin-Tsai equations

The H-T equations were developed in the late sixties [3] Withaim of providing a simple but
an dfective way of calculating the elastic properties of a fib@rfarced lamina, since previous
developments led to complicated equation&clilt to use. Halpin and Tsai developed an in-
terpolation procedure attempting to gather the main resilthose micromechanics analyses.
The success of the H-T equations is based both on their sitypéind on the generalization
of previous micromechanics results cumbersome to usethegeith the relatively accurate
estimations that provide for usual volume fractions. Thhese equations are often termed as
semiempirical [4], as they are based on mechanical fundeisen

The H-T equations can be found in many books on mechanicaMialr of composite materials
[1, 2, 4, 5]. The H-T equation for the transverse modityss:

E> 1+&nVs
—< - 57" 1
Enm 1-nV; (1)
where £ /E 1
f m —
_/=m=- 2
T EJEn+e€ @)

beingE;, E, the fiber and matrix modulus, respectively, &id the reinforcement parameter,
which is the parameter estimated in this work. Analogousgqnos are formulated fd&®;, and
vo3. For the longitudinal modulug; andv,, the well-known rule of mixtures holds [1]. The
only difficulty in using the Halpin-Tsai equations seems to be therahtation of a suitable
value foré. Halpin and Tsai proposed a value $f= 2 for calculation ofE, and¢ = 1 for
calculation ofG, after obtaining an excellent agreement with Adams and Denesults for
circular fibers in a square array at a fiber volume fraction.650

The reinforcement parametérdepends on the fiber geometry, fiber distribution and loading
conditions. It can be shown [2] that wh&én= 0 Eq. (1) reduces to the lower bound fés
given by a strength of materials approach, whereas wheno the rule of mixtures foE; is
recovered (the theoretical upper boundigj. Thus, it is said thaf is a measure of the degree
of matrix reinforcement by the fibers.
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For highV4, the constant value @f = 2 does not provide good results fBg and modifying
equations have been proposed. For exampleyfar 0.65, Hewitt and de Malherbe [6] sug-
gested an equation f@rthat provides better agreement with analytical results.th® case of
E,, this equation is [1]:

E(Vs) = 2+ 40V1° (3)
The H-T equations are also applicable to other reinforcémeometries, such as ribbon or par-
ticulate reinforcements. In [1], a comprehensive summéiy alues for other reinforcement
geometries is given.

Since it is accepted that the valueséére obtained by comparing (1) with exact elasticity
solutions by fitting procedures [1, 2], the aim of this workasestimate the value &f with
the elastic solutions provided by finite element analyselserGthat these analyses take into
account the geometridfect of the random distribution of fibers in the plane 2-3 arsw dhe
variations in fiber diameter that are found in practice, xpected that the estimations #r
will be more accurate than the current available values.

3. Calculation of E, and £ using finite element models

In order to estimate a better value #to calculateE,, numerical models of the unidirectional
fiber reinforced composite have been realized by means tite dlement method. We consider
a fiber-oriented coordinate system213), being the 1-axis aligned with the fiber direction. The
cross section analyzed in this work belongs to the®plane, as shown in Fig. 1. We assume a
plane strain condition for the stress state at a given cexssos, due to the longitudinal fliness
provided by the fibers.
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Figure 1. Cross section in plane-2 3 and sketch of the domain analyzed numerically. A uniaxigfiaum strain
g2 = AL,/L; is applied. Symmetry boundary conditions are considered.

The domain is subjected to uniaxial uniform strain in dil@ec2 by enforcing a given displace-
ment for the right boundary, i.e; = AL,/L,, see Fig.1. Symmetry boundary conditions have
been considered, which is equivalent to consider a domaiohwi four times the domain ac-
tually analyzed. Three arrangements of fibers have beendsred: square array, hexagonal
array and random distribution, as described in Section 4.
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3.1. Calculation of &

By assuming a linear elastic behavior, the generalized Hedde in terms of the compliance
matrix S for an orthotropic lamina is:

€11 Sz Sz S13 0 0 0 011
€22 S12 S Sz O 0 0 022
€3 [ _| S13 Se3 Ss3 0 0 O 033 @)
Y23 0 0 0 S44 O O T23
Y31 0 0 0 0 855 0 T31
Y12 0 0 0 0 0 866 T12

As only a uniform strain in direction 2 is applied, the gloleguilibrium implies thatrsz = 0
andr,3 = 0 due to the symmetry of the solution. Additionally, the @atrain condition implies
thate;; = 0,y3; = 0 andyy, = 0. Therefore, the strain-strain relationship (4) can beced to

0 Si11 Si2 Sis o1
g2 ¢ =| S12 Sz Sy 022 (5)
£33 Si1z Sy3 Ss3 0

From the first equation of 5, it is clear that:

SlZ
011 = —8—0'22 (6)
11
Recalling the symmetry of the compliance mat&and expressing its components in terms of
engineering elastic constants:

—vi12/E1
1/E;

011 = — 022 = V12022 (7)

and substituting this result in the second equation:

1 V2
€2 = (E_z - Eilz) 022 (8)

From this equation, an explicit expression 6y under a plane strain assumption can be ob-
tained: £

E=—— 2 — (9)

Eie20 + v],022

The equation (9) is used to estimdtg from the numerical analysis, sineg, is the applied
uniform strainAL,/L, ando;, is computed simply as the summation of the reaction forces at
the right boundary divided by the net section at that bounflae have assumed unit thickness).
On the other hand;; andv;, are obtained from the constituents properties throughuteeaf

mixtures, which holds foE; andv,, as part of the H-T equations [1]:

E, = EVi + En(1— V) (10)
vi2 = ViVi + vn(1 = V) (11)
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3.2. Calculation of

For the computation of, the value ofE; is first calculated through (9) and introduced in equa-
tion (1). Then, an iterative procedure is used to solve gemelously (1) and (2) fof andn
until the solution converges.

4. Finite element analyses and results

The analyses have been performed with the finite element evoiahcode AnsyS!. The 2D
models have been meshed with quadratic triangular elenieegsFig. 2) and the fiber cross-
section is circular for all cases. Both matrix and fibers haaenbconsidered isotropic and per-
fectly connected through their interfaces. In order to anfthe analyses and compug and

&, some material properties have been fixed as folldgys: 250 GPays = 0.30,E,, = 5 GPa,
vm = 0.38, which correspond to typical values for carbon fiber anokepesin, respectively.
However, the material properties are not relevant, sindepends on the reinforcement geom-
etry and distribution, but not on the material propertiesisThas been verified by making a
sensitivity analysis to the material properties (changewypical glass fiber and polyester resin
composite withgs = 72 GPays = 0.25, E,, = 3.5 GPa,v,, = 0.37). As expected, the obtained
estimations fog are virtually coincident.

4.1. Square and hexagonal arrays

The first set of analyses are performed for a square array effibrhe aim of this section is
to verify that the prediction of our numerical model and c#dtion procedure is in agreement
with the H-T equation using the customary valuefct 2, fitted originally for the Adams and
Doner’s analytical solution for a square array. A total ofdfalyses have been carried out
for different fiber volume fractions, starting frovih = 0.05 toV; = 0.7 (nearly the maximum
theoretical value for a square array) at increments of OF§. 2, left, shows the FE model
for the casé/; = 0.4. The geometrical models have been automatically gertkbgteledicated
macros. All fibers are assumed to have the same diameteuni.2
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Figure 2. FE meshes for square and hexagonal arrays, ¥ase 0.4. Displacement boundary conditions are
shown.

The results are shown in Fig. 3. The solid curve denoted agéfers in fact to the estimation
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provided by Eq. (3), which reduces §o= 2 for a wide range o¥;. The estimation of using

the square array numerical models leads to slightly low&regofé specially forVs in the
range [01, 0.5]. Note the good agreement between the square array nahsoiation and the
H-T solution in the range [B0, 0.55], where it is reported that the H-T solution matches very
well the Adams and Doner’s solution for a square array [1,T2is proves that our numerical
model conveniently reproduces the expected solution wisguare array of fibers is assumed.
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Figure 3. Comparison oft values for standard H-T equation and for numerical estwnatiwith square and
hexagonal arrays.

Further sensitivity analyses have been carried out by ngrghe domain size. In addition, full
3D models with a square array have been also realized to #vei@D assumption of plane
strain. In all cases, we have verified that our models andeplare are dticiently accurate.

Models with an hexagonal array have been also analyzed,ige@ Rght. It is worth noting
that the estimation of when an hexagonal array is considered (see Fig. 3) yieldesdhat
are remarkably lower than the ones provided by Eq. (3). Asafiber distribution is neither a
square nor hexagonal array, this motivated us to perfortysemwith random distributions, as
shown in next section.

4.2. Random distribution

The same procedure has been followed with models genergitaddndom distribution. The
geometrical models have been generated by routines dedkioplatlab. Fig. 4 shows three of
the geometrical models for the casgs= 0.2, 0.4 and 06. Note that eventual contacting fibers
are allowed, as actually expected.

In addition, we have also considered the random variaticheofiber diameter. Although small,
this can have a certain amount of influence, sihisea parameter that depends on the geometry
of the reinforcement and its distribution. From some cress$isn micrographs available in the
literature (e.g. [5]), we have measured the distributiodiafmeters and generated geometrical
models that account for the diameter variation. In thesdoamdistributed models, the previous
diameter of 7.2um has been varied in the rangeq67.7] um, as can be noticed in Fig. 4. Note
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also that the domain size is adjusted for each volume frastiaas to respect the fiber diameters,
i.e. the domains in Fig. 4 are not to scale.
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Figure 4. Geometrical models. Random distributions for the cad4es 0.2, 0.4 and 06.

As the distribution of the fibers and diameters is now randeenhave generated three models
around each volume fraction in the rangeOf)0.6], at increments of 0.05. Note that it has
not been possible to generate a geometrical model Witk 0.65 due to fiber packing issues,
as may well happen in practice. Note also that for each randontel, the actua¥; has been
measured after the model is generated and this leads tchastigtter in the values &; shown

in Fig. 5. A total number of 39 random models have been andlyze
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Figure 5. Comparison o values for standard H-T equation and for numerical estwnatiwith square array,
hexagonal array and random distribution.

The results in Fig. 5 show that the estimated value§ li¢ below the ones provided by (3)
and between the values obtained for square and hexagoagsaks shown in Fig. 5, a value
of £ = 1.5 seems to be more appropriate for volume fraction in theed@g5, 0.55] than the
customary valug = 2. This new value of is proposed to computé, through H-T equations,
without compromising the advantages of these equatiorar asfsimplicity is concerned.
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5. Conclusions

The H-T equations are often used in the design practice Beaafitheir simplicity when com-
pared to analytical approaches. However, the estimatmmis,fusing these equations strongly
depend on the value of the reinforcement paramgtghich takes into account the geometry
and spatial distribution of the reinforcement. It is comnpoactice to use a value gf= 2 for
calculation ofE; using the H-T equations, despite this value was originatgdito the solution
for a square array provided by Adams and Doner. In this wokhawve carried out finite ele-
ment analyses taking into account a random distributioh@fibers and their diameters, which
Is more realistic that the theoretical square array distidin. The analysis procedure has been
verified by first comparing the results for a square arrayifigtion and several sensitivity anal-
yses. As a result of the study, a new valu& ef 1.5 has been proposed to compétethrough
H-T equations in the rangé € [0.25, 0.55], under the assumption that a random distribution is
more representative than the original square array disioib.
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