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Abstract
In this work, an estimation of the reinforcement factorξ of the Halpin-Tsai equations used
to calculate the transverse stiffness E2 is provided. A better estimation of the valueξ = 2
originally suggested by Halpin and Tsai is given through a set of finite element analyses that
consider randomly distributed unidirectional fibers for different volume fractions. The analysis
overcomes the original hypothesis of a square array distribution of fibers in the transverse
plane. It is concluded that a value ofξ = 1.5 is a better estimation for the usual volume
fractions found in practice for a unidirectional lamina of fiber reinforced composites.

1. Introduction

The Halpin-Tsai equations [1] are widely used to calculate elastic properties of different con-
figurations of composite materials. Among these properties, one of the most relevant is the
transverse stiffnessE2 of a unidirectional lamina with oriented continuous fibers.It is well
known that approaches based on a strength of materials analysis underestimate the true value of
E2, leading to a lower bound ofE2 (Reuss boundary) [2]. In the past a large number of models
have been proposed in the literature to obtain more accurateestimations forE2 and other elastic
constants, many based in formal approaches of the theory of elasticity (see the excellent reviews
in [1, 2]). These models account for the matrix-dominant effect on the homogenized valueE2

for a lamina, such as the Ekvall model [2] that considers the triaxial stress state in the matrix
due to fiber restraint.

It has been extensively verified that the Halpin-Tsai (H-T) equations are a good practical way
for calculatingE2, using the originally proposed value of the reinforcement factorξ = 2. The
wide application of the H-T equations heavily relies on their simplicity, which is desirable for
design purposes. The reinforcement factorξ varies with the geometry of the reinforcement, its
distribution and the volume fraction. Originally, the value ofξ for oriented continuous fibers was
derived by Halpin and Tsai from correlation with analyticalsolutions that assume an idealized
geometrical distribution or pattern (e.g. Adams and Doner solution for a square array of fibers
solved by a finite-difference scheme). Some approximate equations forξ are also given in the
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literature to modify the value ofξ for high volume fractions, as recalled in Section 2.

A question arises about the influence of a random distribution of the reinforcement in the trans-
verse plane 2-3, which is much more realistic than a mere square arrangement. Sinceξ takes
into account the effect of the geometry and distribution of the reinforcement, it is expected that
this random distribution may have a non negligible effect. In this work, we carry out a series
of parametric finite element analysis with different random distributions of fibers of circular
cross section to quantify the influence of the random distribution. Several volume fractions are
considered and the diameter of the fiber cross section is alsovaried randomly between the usual
ranges.

An inverse analysis enables the estimation ofξ for different volume fractions, leading to the
conclusion that a more convenient value ofξ is about 1.5 for typical volume fractions instead of
the typical value of 2.0 derived from an idealized square arrangement and usually found in the
literature. An important deviation is also found for low andhigh volume fractions.

2. Calculation of E2 using the Halpin-Tsai equations

The H-T equations were developed in the late sixties [3] withthe aim of providing a simple but
an effective way of calculating the elastic properties of a fiber reinforced lamina, since previous
developments led to complicated equations difficult to use. Halpin and Tsai developed an in-
terpolation procedure attempting to gather the main results of those micromechanics analyses.
The success of the H-T equations is based both on their simplicity and on the generalization
of previous micromechanics results cumbersome to use, together with the relatively accurate
estimations that provide for usual volume fractions. Thus,these equations are often termed as
semiempirical [4], as they are based on mechanical fundamentals.

The H-T equations can be found in many books on mechanical behaviour of composite materials
[1, 2, 4, 5]. The H-T equation for the transverse modulusE2 is:

E2

Em
=

1+ ξηVf

1− ηVf
(1)

where

η =
Ef/Em − 1
Ef/Em + ξ

(2)

beingEf, Em the fiber and matrix modulus, respectively, andξ is the reinforcement parameter,
which is the parameter estimated in this work. Analogous equations are formulated forG12 and
ν23. For the longitudinal modulusE1 andν12 the well-known rule of mixtures holds [1]. The
only difficulty in using the Halpin-Tsai equations seems to be the determination of a suitable
value forξ. Halpin and Tsai proposed a value ofξ = 2 for calculation ofE2 andξ = 1 for
calculation ofG12 after obtaining an excellent agreement with Adams and Doner’s results for
circular fibers in a square array at a fiber volume fraction of 0.55.

The reinforcement parameterξ depends on the fiber geometry, fiber distribution and loading
conditions. It can be shown [2] that whenξ = 0 Eq. (1) reduces to the lower bound forE2

given by a strength of materials approach, whereas whenξ = ∞ the rule of mixtures forE1 is
recovered (the theoretical upper bound forE2). Thus, it is said thatξ is a measure of the degree
of matrix reinforcement by the fibers.
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For highVf, the constant value ofξ = 2 does not provide good results forE2 and modifying
equations have been proposed. For example, forVf ≥ 0.65, Hewitt and de Malherbe [6] sug-
gested an equation forξ that provides better agreement with analytical results. For the case of
E2, this equation is [1]:

ξ(Vf) = 2+ 40V10
f (3)

The H-T equations are also applicable to other reinforcement geometries, such as ribbon or par-
ticulate reinforcements. In [1], a comprehensive summary of ξ values for other reinforcement
geometries is given.

Since it is accepted that the values ofξ are obtained by comparing (1) with exact elasticity
solutions by fitting procedures [1, 2], the aim of this work isto estimate the value ofξ with
the elastic solutions provided by finite element analyses. Given that these analyses take into
account the geometric effect of the random distribution of fibers in the plane 2-3 and also the
variations in fiber diameter that are found in practice, it isexpected that the estimations forξ
will be more accurate than the current available values.

3. Calculation of E2 and ξ using finite element models

In order to estimate a better value forξ to calculateE2, numerical models of the unidirectional
fiber reinforced composite have been realized by means the finite element method. We consider
a fiber-oriented coordinate system (1,2,3), being the 1-axis aligned with the fiber direction. The
cross section analyzed in this work belongs to the 2− 3 plane, as shown in Fig. 1. We assume a
plane strain condition for the stress state at a given cross section, due to the longitudinal stiffness
provided by the fibers.

Figure 1. Cross section in plane 2− 3 and sketch of the domain analyzed numerically. A uniaxial uniform strain
ε2 = ∆L2/L2 is applied. Symmetry boundary conditions are considered.

The domain is subjected to uniaxial uniform strain in direction 2 by enforcing a given displace-
ment for the right boundary, i.e.ε2 = ∆L2/L2, see Fig.1. Symmetry boundary conditions have
been considered, which is equivalent to consider a domain which is four times the domain ac-
tually analyzed. Three arrangements of fibers have been considered: square array, hexagonal
array and random distribution, as described in Section 4.
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3.1. Calculation of E2

By assuming a linear elastic behavior, the generalized Hooke’s law in terms of the compliance
matrix S for an orthotropic lamina is:
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(4)

As only a uniform strain in direction 2 is applied, the globalequilibrium implies thatσ33 = 0
andτ23 = 0 due to the symmetry of the solution. Additionally, the plane strain condition implies
thatε11 = 0, γ31 = 0 andγ12 = 0. Therefore, the strain-strain relationship (4) can be reduced to
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(5)

From the first equation of 5, it is clear that:

σ11 = −
S12

S11
σ22 (6)

Recalling the symmetry of the compliance matrixS and expressing its components in terms of
engineering elastic constants:

σ11 = −
−ν12/E1

1/E1
σ22 = ν12σ22 (7)

and substituting this result in the second equation:

ε22 =

(

1
E2
−
ν212

E1

)

σ22 (8)

From this equation, an explicit expression forE2 under a plane strain assumption can be ob-
tained:

E2 =
E1σ22

E1ε22+ ν
2
12σ22

(9)

The equation (9) is used to estimateE2 from the numerical analysis, sinceε22 is the applied
uniform strain∆L2/L2 andσ22 is computed simply as the summation of the reaction forces at
the right boundary divided by the net section at that boundary (we have assumed unit thickness).
On the other hand,E1 andν12 are obtained from the constituents properties through the rule of
mixtures, which holds forE1 andν12 as part of the H-T equations [1]:

E1 = EfVf + Em(1− Vf) (10)

ν12 = νfVf + νm(1− Vf) (11)

4



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

3.2. Calculation ofξ

For the computation ofξ, the value ofE2 is first calculated through (9) and introduced in equa-
tion (1). Then, an iterative procedure is used to solve simultaneously (1) and (2) forξ andη
until the solution converges.

4. Finite element analyses and results

The analyses have been performed with the finite element commercial code AnsysTM. The 2D
models have been meshed with quadratic triangular elements(see Fig. 2) and the fiber cross-
section is circular for all cases. Both matrix and fibers have been considered isotropic and per-
fectly connected through their interfaces. In order to perform the analyses and computeE2 and
ξ, some material properties have been fixed as follows:Ef = 250 GPa,νf = 0.30, Em = 5 GPa,
νm = 0.38, which correspond to typical values for carbon fiber and epoxi resin, respectively.
However, the material properties are not relevant, sinceξ depends on the reinforcement geom-
etry and distribution, but not on the material properties. This has been verified by making a
sensitivity analysis to the material properties (changed to typical glass fiber and polyester resin
composite withEf = 72 GPa,νf = 0.25, Em = 3.5 GPa,νm = 0.37). As expected, the obtained
estimations forξ are virtually coincident.

4.1. Square and hexagonal arrays

The first set of analyses are performed for a square array of fibers. The aim of this section is
to verify that the prediction of our numerical model and calculation procedure is in agreement
with the H-T equation using the customary value ofξ = 2, fitted originally for the Adams and
Doner’s analytical solution for a square array. A total of 14analyses have been carried out
for different fiber volume fractions, starting fromVf = 0.05 toVf = 0.7 (nearly the maximum
theoretical value for a square array) at increments of 0.05.Fig. 2, left, shows the FE model
for the caseVf = 0.4. The geometrical models have been automatically generated by dedicated
macros. All fibers are assumed to have the same diameter: 7.2µm.
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Figure 2. FE meshes for square and hexagonal arrays, caseVf = 0.4. Displacement boundary conditions are
shown.

The results are shown in Fig. 3. The solid curve denoted as H-Trefers in fact to theξ estimation
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provided by Eq. (3), which reduces toξ = 2 for a wide range ofVf. The estimation ofξ using
the square array numerical models leads to slightly lower values ofξ specially forVf in the
range [0.1,0.5]. Note the good agreement between the square array numerical solution and the
H-T solution in the range [0.50,0.55], where it is reported that the H-T solution matches very
well the Adams and Doner’s solution for a square array [1, 2].This proves that our numerical
model conveniently reproduces the expected solution when asquare array of fibers is assumed.
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Figure 3. Comparison ofξ values for standard H-T equation and for numerical estimations with square and
hexagonal arrays.

Further sensitivity analyses have been carried out by varying the domain size. In addition, full
3D models with a square array have been also realized to avoidthe 2D assumption of plane
strain. In all cases, we have verified that our models and procedure are sufficiently accurate.

Models with an hexagonal array have been also analyzed, see Fig. 2 right. It is worth noting
that the estimation ofξ when an hexagonal array is considered (see Fig. 3) yields values that
are remarkably lower than the ones provided by Eq. (3). As a true fiber distribution is neither a
square nor hexagonal array, this motivated us to perform analyses with random distributions, as
shown in next section.

4.2. Random distribution

The same procedure has been followed with models generated by a random distribution. The
geometrical models have been generated by routines developed in Matlab. Fig. 4 shows three of
the geometrical models for the casesVf = 0.2, 0.4 and 0.6. Note that eventual contacting fibers
are allowed, as actually expected.

In addition, we have also considered the random variation ofthe fiber diameter. Although small,
this can have a certain amount of influence, sinceξ is a parameter that depends on the geometry
of the reinforcement and its distribution. From some cross section micrographs available in the
literature (e.g. [5]), we have measured the distribution ofdiameters and generated geometrical
models that account for the diameter variation. In these random-distributed models, the previous
diameter of 7.2µm has been varied in the range [6.7,7.7] µm, as can be noticed in Fig. 4. Note
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also that the domain size is adjusted for each volume fraction so as to respect the fiber diameters,
i.e. the domains in Fig. 4 are not to scale.

Figure 4. Geometrical models. Random distributions for the casesVf = 0.2, 0.4 and 0.6.

As the distribution of the fibers and diameters is now random,we have generated three models
around each volume fraction in the range [0.05,0.6], at increments of 0.05. Note that it has
not been possible to generate a geometrical model withVf > 0.65 due to fiber packing issues,
as may well happen in practice. Note also that for each randommodel, the actualVf has been
measured after the model is generated and this leads to a slight scatter in the values ofVf shown
in Fig. 5. A total number of 39 random models have been analyzed.
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Figure 5. Comparison ofξ values for standard H-T equation and for numerical estimations with square array,
hexagonal array and random distribution.

The results in Fig. 5 show that the estimated values ofξ lie below the ones provided by (3)
and between the values obtained for square and hexagonal arrays. As shown in Fig. 5, a value
of ξ = 1.5 seems to be more appropriate for volume fraction in the range [0.25,0.55] than the
customary valueξ = 2. This new value ofξ is proposed to computeE2 through H-T equations,
without compromising the advantages of these equations as far as simplicity is concerned.
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5. Conclusions

The H-T equations are often used in the design practice because of their simplicity when com-
pared to analytical approaches. However, the estimations for E2 using these equations strongly
depend on the value of the reinforcement parameterξ which takes into account the geometry
and spatial distribution of the reinforcement. It is commonpractice to use a value ofξ = 2 for
calculation ofE2 using the H-T equations, despite this value was originally fitted to the solution
for a square array provided by Adams and Doner. In this work, we have carried out finite ele-
ment analyses taking into account a random distribution of the fibers and their diameters, which
is more realistic that the theoretical square array distribution. The analysis procedure has been
verified by first comparing the results for a square array distribution and several sensitivity anal-
yses. As a result of the study, a new value ofξ = 1.5 has been proposed to computeE2 through
H-T equations in the rangeVf ∈ [0.25,0.55], under the assumption that a random distribution is
more representative than the original square array distribution.
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