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Abstract: 

In the paper an analytical method of the solution of the governing nonlinear eigenproblem is 

proposed. It can be directly applied into the analysis of eigenstates in quantum mechanics. 

The method is based on the use of the separation of variables for specific shapes of quantum 

dots. In this way the analysis can be reduced to the discretization along one variable only – 

the Daubechies wavelets or linear finite elements or Fourier series. The eigenstates are 

derived with the use of the variational formulation combined with the method of the Rayleigh 

quotient and the series expansions (Bessel functions). The solved two- and three-dimensional 

examples show the efficiency and the effectiveness of the proposed method. The method can 

be easily applicable to different physical problems described by the Helmholtz equations. 

 

 

1. Introduction 

 

Rapid advances in chemical synthesis and fabrication techniques have led to novel nano-sized 

materials that exhibit unique and often unforeseen properties. One of the greatest advantages 

of those nanosystems is the ability to control their electronic and optical properties through 

the sample’s size, shape and topology. The design of nanoelectronic devices requires a clear 

understanding of the fundamental properties of nanomaterials. When nanomaterials absorb a 

light quantum, two charged particles are created simultaneously, an electron and a hole. 

Knowledge of photoinduced charge carrier dynamics in nanomaterials will help to achieve an 

effective functionality of prospective nanonelectronic devices. In recent decades 

semiconductor quantum dots (QD) have been the subject of many experimental, theoretical 

and technological investigations.  

 

QDs are tiny dimensionally confined (typically semiconductor) objects where quantum effects 

become obvious, for example, energy spectra become discrete. Of particular interest is the 

class of devices that are composed of combinations of lattice mismatched materials. These 

material combinations, such as SixGe1-x/Si and InxGa1-xAs/GaAs, where x indicates the 

fractional content of alloying material, are selected primarily on the basis of their electronic 

properties and to some extent for convenience of processing. Quantum effects begin to 

dominate as the size of semiconductor structures approaches the electron de Broglie 

wavelength. In low-dimensional semiconductor nanostructures (LDSN), the motion of 

electrons can be confined spatially, from one, two, and even three spatial directions. The 

operation of semiconductor quantum devices is based on the confinement of individual 

electrons and holes in one spatial dimension (quantum wells), two spatial dimensions 
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(quantum wires) or three spatial dimensions (quantum dots - QDs). For instance the potential 

barriers forming the well are provided primarily by either free surfaces, which impose 

essentially infinite confinement, or by sharply layered compositional differences. Common 

configurations of QDs are: cuboidal, conical, lens shaped (ellipsoidal), pyramidal, truncated 

pyramidal or hemispherical, whereas quantum wires: trapezoidal or cylindrical.  

 

Yet fundamental understanding of the underlying physics responsible for carrier dynamics 

and the specific role that phonons play in the relaxation mechanisms in QDs is still lacking. In 

such nanostructures, the free carriers are confined to a small region of space by potential 

barriers, and if the size of this region is less than the electron wavelength, the electronic states 

become quantized at discrete energy levels. The ultimate limit of low dimensional structures 

is the quantum dot, in which the carriers are confined in all three directions. Therefore, a 

quantum dot can be thought of as an artificial atom. 

 

Many of the previous numerical modeling approaches for these quantum structures used 

spatial discretisation methods, such as the finite element or finite difference method [1-3]. As 

an alternative, the boundary element method was proposed by Geldbard, Malloy [4]. Voss [5] 

employed the Rayleigh-Ritz method to solve the nonlinear eigenvalue problem where the 

eigenstates of the electron in QDs were derived with the use of the finite element method 

incorporated in the MATLAB package. Lew Yan Voon, Willatzen [6, 7] found an analytical 

solutions for paraboloidal and ellipsoidal QDs not embedded in the matrix. Various aspects of 

the evaluation of the eigenenergies in closed periodic systems of quantum dots were also 

discussed in the literature - see e.g. Refs [8,9]. 

 

Even in devices free of misfit dislocations, the strain induced by lattice mismatch can strongly 

affect electronic properties. However, this effect has not been thoroughly studied, particularly 

in submicron sized structures in which quantum mechanics governs the device properties and 

in which strains are highest and most nonuniform. In order to analyze strain effects in 

semiconductor quantum structures, it is necessary to adopt a model for electronic properties. 

Simple quantum mechanical models have long been available for describing the electronic 

properties of semiconductor devices based on the transport and confinement of single charge 

carriers. The study of quantum dots and quantum wires has renewed the interest in these 

models. The effects of uniform, coherent strain on electronic properties have also been well 

understood for many years and have been identified experimentally by Zaslavsky et al. [10]. 

There have been some attempts to model strain effects in quantum dots – see e.g. Ref [3]. 

Further, many quantum dot structures have a well-pronounced piezoelectric effect which does 

contribute to their overall properties in a non-trivial manner. These coupled 

elelectromechanical effects will become increasingly important for the current and future 

applications of such nanostructures – see Refs [11-13]. 

In the present paper the use of wavelet method/linear finite elements/Fourier series combined 

with the analytical approach in quantum mechanical nonlinear eigenvalue problem is 

investigated. The solutions are obtained for 2D and 3D cases of quantum dots embedded in 

the matrix. Wavelet bases appear to be attractive as a general approach for a wide range of 

potentials, and not only for quantum dots. In the mathematical sense the problem is described 

by the solution of the Helmholtz equation. 
 

2. Formulation of the problem 

 

By adopting this continuum view of confinement in semiconductor quantum devices, the 

spectrum of confined states available to individual electrons or holes can be characterized by 

the steady state Schrodinger equation, given by: 
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where Hi is the Hamiltonian function (operator), Φi is the quantum mechanical wave function 

associated with energy band, E denotes the energy level (the identical value for the matrix and 

the quantum dot), ħ is the reduced Planck constant, and the index i corresponds to the 

quantum dot (i=1; q) and to the matrix (i=2; m), respectively. The solution of the problem 

depends on boundary conditions; free surfaces impose the physical requirement that Φi =0 for 

all i. Conditions on boundaries that are remote from regions of interest in the device do not 

significantly affect energies or wave functions in regions of interest that are solutions to Eq. 

(1).The steady state Schrődinger (1), which governs the behavior of individual charge carriers 

in strained devices, is in the form of the classical Helmholtz equation: 
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The weak form of the equation (1) is obtained by forming the inner product of each term in 

the equation with the wave function vector field Φi and integrating over the volume of the 

body. Multiplying (1) by Ψ in the Sobolev space   21

0

1  , H  and integrating by parts 

one gets the variational form of the Schrödinger equation: 
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Eq. (1) is the Euler equation which results from the requirement that Eq. (3) must be 

stationary under variations in Ψ. If the quadratic form  E;,a   is a positive, monotonically 

decreasing function then an unique positive solution exists (4) and the corresponding 

eigenvectors Φk are stationary elements of E’(Φk). If the quadratic form a does not dependent 

on E, then the above Rayleigh functional is just the well known Rayleigh quotient. The 

evaluation of the Rayleigh functional is based on the discretization method of the eigenvectors 

Φk. The standard approach is based on the finite element discretization of the body. Some 

problems can be solved in the analytical way (dependant on the form of QDs) by the 

separation of variables - see Refs [6,7,14]. Now, we adopt wavelets as general and flexible 

tool for the solution of time independent Schrodinger (Helmholtz) equation. 

 

3. Separation of variables 

 

It is well-known that for the Helmholtz equation (2) separates in eleven coordinate systems – 

see Boyer et al. [15]. The separation of variables have been directly used in solving Eq. (2) for 

the special shapes of quantum dots – see Refs [6,7,14]. One of those situations occurs for the 

cylindrical coordinates. It is commonly accepted that if the distance of the QD from any free 

boundary is significantly larger than the QD highest dimension (i.e. three times) then the host 

matrix boundaries do not impact the solution. Therefore, let us assume that the obtained 

further solutions are valid in the cylindrical system of coordinates. Using, it the wave function 

can be written as Eq. (5): 
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A lot of planar curves can be expressed in the form of the superellipse defined as Eq. (6). 

where a, b and p are positive rational numbers. A supercircle will obviously correspond to 

setting a = b. For each value of p – the supercircular exponent – we obtain a different curve. 

The shapes of the supercircles for different values of n are shown in Fig. 1. Evidently, p = 2 

corresponds to a circle whereas p= 1 corresponds to a square with its sides rotated by an angle 

of π/4. The case p also corresponds to a square with its sides parallel to the axes. Finally, 

the curve Γ characterizing the supercircle can be represented in the form of the Fourier series:  

 

   valueconstant  for the 4    :
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zncosG
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    (7) 

 

The above relation exploits the symmetry with respect to the OX and OY axes. 
 

n=8n=3n=2n=1.4

 
 

Figure.1 Shape of the supercircle for different values of p 
 

Inserting the relations (5) and (7) into the Helmholtz equation (2) we obtain the following 

form: 
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and si are the separation constants. If we rescale the spatial coordinate r in Eq. (8) and 

introduce a new variable 
22

ii skrx  , the first equation can be reduced to the classical form 

of the Bessel equation: 
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Since the Bessel function J-4n(x) tends to an infinity at x=0, the solutions of the above 

equation exist for the nonnegative values of the natural numbers n. The solution of the 

equations (9) can be represented in the form of the Bessel function so that we propose to 

define the radial part of the eigenvectors in the form of the orthogonal Bessel functions: 
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where the symbols  n

m

4  denote the m-th zero of the Bessel function J4n at r=r0. Let us note 

that each constant  n

mA 4 is parameterized also by the value n.  
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In the z direction the expansion of the function Z(z) in the classical Fourier series seems to be 

the simplest form of its representation, i.e: (11) where z1 and z0 denotes the upper and lower 

boundaries of the quantum dot, respectively.  

The next approach is associated with the use of the one dimensional finite elements, i.e. the 

function Z(z) is expressed in terms of nodal values and element shape functions, as: (12). 

The representation of a trial wavefunction as a linear combination of finite elements was 

discussed by Strang [15].  

The last possibility, considered herein, is connected with the use of the wavelet method. Over 

the last couple of decades, wavelets in general have gained a respectable status due to their 

applications in various disciplines and as such have many success stories. Notable impacts of 

their studies are in the fields of signal and image processing, numerical analysis, differential 

and integral equations, tomography, etc. Wavelets have the ability to represent functions at 

different levels of resolution, which allows developing a hierarchy of approximate solutions 

of equations. Compactly supported wavelets are localized in space, wherein solutions can be 

refined in regions of sharp variations/transients without going for new grid generation, which 

is the common strategy in classical numerical schemes. Particularly interesting from the point 

of view of electronic structure calculations is the work by Cho et al. [16], exploring the use of 

the “Mexican hat” wavelet basis in the density functional calculations. Now, we describe 

briefly how the wave functions are expressed in the Daubechies basis. Though a more 

complete description can be found in [17]. Both functions are localized, with compact 

support. All the properties of these functions can be obtained from the relations – see Fig.2: 
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Figure 2. Scaling function φ(x) and wavelet function ψ(x) for L=6. 
 

which relate the basis functions on a grid with spacing h and another one with spacing h/2. h j 
and g j = (−1)

 j
h−j+1 are the elements of a filter that characterizes the wavelet family, and L is 

the order of the family. L=6 is the lowest number for which the wavelets and scaling 

functions possess the continuous first derivative, whereas L=10 – the second derivative. From 

Eq. (13), every scaling function and wavelet on a coarse grid of spacing z can be expressed 

as a linear combination of scaling functions at the finer grid level 2/z . For this reason, 

wavelet functions complete the information which is lacking for refining the resolution level.  

The function Z(z) can be approximated by scaling function φ(τ) at an arbitrary scale as: 

    1210  ,   ,
1




n,...,,,zzlCzZ
l

l    (14) 

where the function is discretized at n points in the interval [z0,z1]. The detailed discussion of 

those problems is presented by Genovese et al. [19].  

In the relations (11)-(14) the symbol Cl denotes the approximation coefficients.  



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

6 

 

4. Solution of the problem 

 

In the present analysis the electron effective mass mi is assumed to be constant on the 

quantum dot and the matrix for every fixed energy level E and is taken as [10]: 
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where the confinement potential Vi is piecewise constant, and Pi , Eg,i  and  δi are the 

momentum matrix element, the band gap, and the spin–orbit splitting in the valence band for 

the quantum dot (i = q) and the matrix (2 = m), respectively. The values of the above 

constants are given in Table 1. 

 
Pi Eg,i Vi δi 

i=1 (q) InAs 0.8503 0.42 0 0.48 

i=2 (m) GaAs 0.8878 1.52 0.7 0.34 
 

Table 1. The material properties of the quantum dot InAs and the matrix GaAs. 
 

With the use of the relation (15) it is possible to use the identical approximations of the wave 

functions in the equations (3) and (4), since the different properties of the QD and the matrix 

are hidden in Table 1. 

Using the properties of the Bessel function the numerator in the equation (3) takes the form 

eq. (16) whereas the denominator eq. (17). 
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The computation is carried out in the iterative way in two steps: 

1. For the assumed value of the eigenenergy E0 the minimum of the functional a(Φ,Φ)-

E0b(Φ,Φ) is searched for, with respect to the unknown coefficients Am and Cn,  

2. For the calculated values of Am and Cn a rational matrix eigenvalue problem (4) is 

solved to determine a new eigenvalue E1. 

The procedure is repeated until the required accuracy is reached. The computations are 

conducted with the use of the symbolic package Mathematica. 

 

5. Performance Results 

 

We have applied our method on two different problems in order to test its efficiency and 

effectiveness. Figure 3 demonstrates the axisymmetrical conical quantum dot embedded in the 

axisymmetric cylindrical matrix. The radius and the height of the QD are equal to 10, whereas 

the radius and the height of the matrix are equal to 40 and 30, respectively. The physical 
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properties of the materials are given in Table 1. The boundary conditions are assumed to be in 

the Dirichlet form, i.e. the wave functions are equal to zero on the boundaries. 

 

r

z

matrix

QD

C
L

 
 

Figure 3. Geometry of the quantum dot surrounded by the matrix 
 

Table 2 shows the results of the computations. The results are presented for the first six 

eigenvalues and compared also with the results available in the open literature. 

 
The electron orbital 

 quantum number 

Eigenvalue- present analysis Eigenvalue-Voss [5] 

Finite element (planar)  

6000 
Fourier expansion 

15 to 20 terms 

Finite element 

30 (linear) 

Wavelet 

L=12 

0 0.254607 0.255243 0.258931 0.254585 

1 0.387332 0.386121 0.395571 0.384162 

0 0.466941 0.469542 0.471121 0.467239 

2 0.502889 0.503891 0.504005 0.503847 

0 0.560774 0.562781 0.564451 0.561319 

1 0.599138 0.604511 0.597138 0.598963 

3 0.622213 0.634115 0.623356 0.617759 
 

Table 2. Eigenvalues for the conical quantum dot embedded in the matrix 

 

The computed eigenvalues shows quite good agreement with the results obtained by Voss [5]. 

In present the computations the maximal number of terms in the expansions of the function 

Z(z) is different, however, the use of the linear finite element or the wavelet approximations 

seems to be much more reasonable that the application of the finite element discretization 

with the use of the triangular elements. The approximation in the radial direction (10) was cut 

off on the maximal 50 terms. It is worth to note that the lowest values of the eigenvalues do 

not correspond to the lowest values of the electron orbital quantum number.  

The next example deals with the analysis of the pyramidal quantum dots (with slightly 

rounded corners due to the use of the approximation (7)) embedded in the cuboidal (with 

rounded corners) matrix. The results are given in Table 3.  

 
The electron orbital 

 quantum number 

Eigenvalue- present analysis Eigenvalue-Voss [5] 

Finite element (tetrahedrons)  

6000 
Fourier expansion 

15 to 20 terms 

Finite element 

30 (linear) 

Wavelet 

L=12 

0 0.254607 0.255243 0.258931 0.254585 

1 0.387332 0.386121 0.395571 0.384162 

0 0.466941 0.469542 0.471121 0.467239 

2 0.502889 0.503891 0.504005 0.503847 

0 0.560774 0.562781 0.564451 0.561319 

1 0.599138 0.604511 0.597138 0.598963 

3 0.622213 0.634115 0.623356 0.617759 
 

Table 3. Eigenvalues for the pyramidal quantum dot embedded in the matrix 



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

8 

 

6. Concluding Remarks 

 

The present method shows the possibility of analytical computations of nonlinear boundary 

value problem characterized by the Helmholtz equations. In this way it is possible to find not 

only the energy spectrum and wave functions of an electron in a quantum dot but also the 

acoustic eigenfrequencies and eigenmodes of the pressure field inside an acoustic cavity. 

Eigensolutions are presented in the convenient form of the series expansions. The analysis can 

be conducted for the arbitrary form of the potential function, however having the 

axisymmetry with respect to the axis of rotations. 
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