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Abstract  
 
Strand-based wood composites, such as parallel strand lumber (PSL), are increasingly being 
used in construction of mid-rise buildings. These composites consist of orthotropic wood 
strands covered with small amount of resin. In order to estimate the effective properties of 
these materials, a specific scale transition approach, called “Morphological approach” 
(MA), is employed. The latter has been shown to be particularly effective for highly-filled 
composites in previous studies devoted to another class of materials. In this paper, the 
accuracy of the MA in estimating the effective properties of a unit cell of a PSL beam is 
investigated by comparison with reference solutions obtained by full-field Finite Element 
(FE) simulations. The MA is also compared to another recent analytical scale transition 
approach used for strand-based wood composites. First, this is done considering both 
constituents (strands and resin) linear elastic and then considering the viscoelasticity of the 
resin. In both cases, MA results are shown to be closer to the numerical reference solutions 
than other analytical estimates.  

 
 

1. Introduction 
 

The motivation for this work comes from structural wood composite industry. Strand-based 
wood composites are a new category of building materials that are widely being used in the 
construction industry, especially in North America. This type of material which belongs to a 
class of wood-based composites made of wood strands is becoming popular in other parts of 
the world due to its reasonable cost compared to conventional construction materials, 
environmental friendliness and tailorable properties.  

Strand-based wood composites (e.g. Parallel Strand Lumber or PSL) consist of high volume 
fractions of fully orthotropic fibres (wood strands) bonded together with a thermoset resin 
(e.g. Phenol Formaldehyde). Resin content is usually less than 5% by weight and strands are 
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close to being rectangular in shape, due to the cutting method widely used in the wood 
composite industry.  

In this paper a specific scale transition approach, devoted to highly filled particulate 
composites, and called “Morphological Approach” (MA) is applied to estimate elastic and 
viscoelastic properties of a PSL unit cell. In a general manner, the MA is based on an explicit 
representation of the material morphology in which each particle (here strand) and each resin 
inter-granular region is labelled and characterized with morphological parameters. This allows 
taking into account salient features such as spatial arrangement and morphology of 
constituents in addition to volume fractions. Thanks to a specific kinematical description, the 
MA faces the crucial challenge of accounting for strong and complex interactions between 
opposite particles when the matrix volume fraction is low. Strong subsequent effects on the 
global non-linear behavior of a composite may thus be correctly described for a low 
computational effort, e.g. see [1], [2], [3]. 

The objective is to evaluate the relevance of the MA as applied to PSL materials. To this aim, 
the MA estimates are compared to full-field finite element reference solutions and to recent 
analytical estimates proposed by [4]. This is done for a wide range of resin content, as used in 
wood composite industry. 

2. Real mesostructure and idealization 
 
A typical sample of PSL, which is used as beams and columns in wood frame buildings, is 
shown in Figure 1. As in in the recent work by Malekmohammadi et al. [4], the strand-based 
composite structure is here idealized as a regular assembly of rectangular strands with the 
same size and covered by a thin layer of resin with constant thickness. With such 
representation, we may define a unit cell of the material as shown in Figure 1. The strand 
thickness, width and length are chosen to be 5mm, 13mm and 600mm, respectively. These 
values are taken from the experimental study conducted by [5]. As in the work by Gereke et 
al. [6], it is moreover assumed that PSL is free of voids and that there is perfect bonding 
between strands and resin. Analytical estimates resulting from MA and [4], as well as FE 
reference solutions, will be based on this idealization of the real mesostructure. 
 

       

 

 

 
Figure 1. Sample of a PSL, idealized mesotructure and unit cell definition, [4] 
 
 
3. Principle of the “Morphological approach” 
 
3.1 Generalities for any highly-filled particulate composite, [1] 
 
The initial microstructure of a highly-filled composite is represented by an aggregate of 
polyhedral grains interconnected by thin matrix layers with constant thicknesses. This 
schematization is illustrated in Figure 2. In the case of a particulate composite, a numerical 
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polyhedrization process is applied to this aim. For each layer α, four morphological 
parameters are then identified (Figure 2c):  

- αh , the constant thickness of layer α 

- αA , the projected area of layer α; the associated volume is then Aα hα 

- αd , the vector linking the centroids of the polyhedra separated by layer α 

- αn , the unit vector normal to the plane interface grain/layer α.  
 

 

. 
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Aα 

. 

hα 

nα 

c) 

dα 

 

Figure 2. Illustration of the geometrical schematization, [1]: a) real particulate composite microstructure, b) 
schematized microstructure, c) morphological parameters for a layer α (2D representation) 

 
Once the grains are replaced by polyhedra (satisfying the condition of parallelism between the 
interfaces of opposite grains), the parameters αd , αn , αh  and Aa are readily determined 
thanks to simple geometrical measurements.  
 
The local problem approach is based on simplifying assumptions regarding the local 
displacement in the schematized volume. The grain centroids are displaced so as to conform 
to a global, homogeneous displacement gradient F (characterizing the imposed loading). The 
grains are supposed homogeneously deformed and the corresponding displacement gradient 

0f  assumed to be identical for all grains. Each interconnecting layer is subjected to a 

homogeneous displacement gradient, proper to the layer α considered and noted αf . Local 
disturbances at grain edges and corners (circled zone, Figure 2c) are neglected on the basis of 
thinness of the layers. 
 

With these assumptions, the continuity of displacements on the grain/layer interfaces leads 
to the expression of the displacement gradient αf  of any layer α as a function of the 

macroscopic gradient F, of 0f  and of the morphological parameters proper to the layer, (see 
[1], [2] for more details):  

αh

αnαd0fF0fαf
jk
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ijij 





 −+=     (1) 

The compatibility between local motion defined above and the global motion characterized by 
the given displacement gradient F, (i.e. 

V
fF = ) is ensured through the following 

condition to be satisfied by the morphological parameters of the schematized material: 
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where V is the volume of the assembly of grains and layers and ijδ  is the Kronecker symbol.  

Then, the Hill-Mandel principle of macro-homogeneity applied in the context considered (i.e. 
by using (1) and (2)), gives rise to the following equation: 

( ) ∑∑ =σ−σ+σ−
α

α
j
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ij

0
ij 0dAn

V

1
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σσσσ0 and σσσσα denote the average Cauchy stress tensors over the grains and layer α, respectively. 

∑=
α

αα

0
hA

V

1
c  is the layers’ concentration with respect to volume V .  

 
3.2 Solving procedure 
 
Consider a schematized volume satisfying the compatibility requirement (2) and a loading 
path characterized by the macroscopic displacement gradient F. The input data for the local 
problem are thus F, morphological parameters { }ααααα ∀Ah ,,,nd  and constituents’ 
mechanical properties. The local constitutive laws for the grain and matrix are introduced in 
(3) as well as (1) to explicit αf . Then, Equation (3) is solved to give 0f  as a function of 

input data. The knowledge of 0f  allows the backwards calculation of the composite response 

at both scales: αf  for any layer α by using (1), local stresses by the local laws and finally the 

homogenized Cauchy stress tensor ΣΣΣΣ by volume averaging. This solving strategy is valid 
whatever the constituents’ laws.  
 
3.3 Case of linear elasticity 
 
In the elastic case and whatever the constituents’ material symmetries, the solving procedure 
is analytical and leads to the following expression of the homogenized stiffness tensor, [2] : 
 

ABALL ::
V

(e)Hom 1−−=     (4) 

where:  

(e)Matrix

V

(e) LLA −=     (5) 
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ijklijklijkl TLL-AB +=     (6) 

∑=
α

αααααα /hAndnd
V

1
T lkjiijkl     (7) 

V

(e)L  designates the volume average of the local stiffness tensor and (e)MatrixL  the matrix 

stiffness tensor. It is stressed that the MA accounts for initial morphology and internal 
organization of constituents through the presence of the fourth-order structural tensor T  
given by (7) in the expression of the homogenized stiffness tensor (via B). The reader may 
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refer to the work by [7] where it is shown that T  reflects possible material texture and 
irregularities in grain shape and in layer thickness. 
 
3.4 Case of linear viscoelasticity 
 
When the matrix is linear viscoelastic defined by Prony series expansions, Equation (3) is 
numerically solved using a Newton-Raphson algorithm. It is to be noted that the solving is 
direct, namely it is performed in the real time domain without using Laplace transforms. This 
is a crucial difference with Eshelby-based homogenization methods. Previous works [1] have 
shown the ability of MA to deal with complex spatio-temporal local interactions between 
constituents and subsequent macroscopic effect called “Long memory effect”.  
 
Relaxation loading paths for each of the six classical elementary loadings are imposed to the 
schematized volume in order to compute the effective stiffness tensor at each time step and 
finally deduce the time evolution of engineering constants. 
 
4. MA application to a PSL and results 
 
4.1 Morphological parameters identification 
 
The idealized mesostructure presented in Figure 1 respects by nature the requirements of the 
geometrical schematization recalled in Section 3.1. Moreover, considering the periodicity it is 
sufficient to consider as domain V for which Equation (3) is solved, only one rectangular 
grain (strand) and three layers: “layer i” for i = 1,2,3, with respective normal unit vector in =i  
as illustrated in Figure 3. The intergranular distance being the same in the three directions, the 

layers have identical thickness (h). The norms id  of vectors id ii d=  are deduced from the 
knowledge of h and dimensions of the strand. The projected areas Ai are calculated so that the 

condition (2) is exactly satisfied. The values of (h, id and Ai for i = 1,2,3) are different for 
each resin volume fraction that will be considered in the following section. 
 

       

 

 
Figure 3. Idealized PSL mesotructure and elementary “pattern” for MA with morphological characteristics 
parameters 
 
4.2 Results in elasticity 
 
The elastic properties of resin and wood strand used in both numerical and analytical 
approaches are listed in Table 1. Resin is assumed to be isotropic and elastic in this section. 
The elastic properties of Phenol Formaldehyde (PF) resin are taken from the literature [8].  
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The orthotropic elastic properties of strands are those of Pine wood taken from wood 
handbook [9].  

 
 
 
 
 

Table 1. Constituents’ elastic properties 
 
Figure 4 shows the comparison between the analytical and numerical results for different resin 
volume fractions. MA estimates are in better agreement with FE reference solutions than 
estimates due to [4], noted (Ana) in Figure 4. The relative error between MA estimates and 
reference solutions remains below 0.8% while it is 5% for the estimates due to [4]. 
 

    
 

 
Figure 4. Comparison of homogenized moduli obtained by the MA and the previous approach due to 
Malekmohammadi et al. [4] to FE reference solutions, for different resin volume fractions 

 
4.3 Results in viscoelasticity 
 
The geometrical and mechanical characteristics of the strand are the same as for elastic 
analysis. The resin content is 7.3% by volume corresponding to resin thickness h of 0.28 mm. 
The resin phase shear and bulk moduli (G and K, respectively) are defined by Prony series 
expansions following the classical formulation available in Abaqus®. The series for the shear 
and bulk moduli are distributed over five relaxation times ranging over four decades. Shear 
weight factors gk and associated relaxation times τk are taken from the literature [10]. Elastic 
properties given in Table 1 are used for the instantaneous, unrelaxed, shear and bulk modulus 
values. Since the bulk modulus of the resin is difficult to measure during relaxation, identical 
distributions are prescribed (gk = kk). The resulting parameters defining the Prony series are 
given in Table 2. It should be noted that the viscoelastic behaviour of the PF resin used in 
wood composite industry may be different from the data given in Table 2. However, using the 
same Prony series for both numerical and analytical approaches is sufficient to evaluate 
analytical estimates by comparison with numerical reference data.  
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No. gk kk τk (sec) 

1 0.171479 0.171479 1.01E-02 

2 0.0833645 0.0833645 1.01E-01 

3 0.0348822 0.0348822 1.01E+00 

4 0.0120372 0.0120372 1.01E+01 

5 0.698237 0.698237 1.01E+02 
 

Table 2. Resin viscoelastic properties (Prony series parameters for the shear and bulk moduli) 
 
As an illustration of the results, Figure 5 shows the comparison between the analytical and 
numerical results for transverse Young’s moduli. Once again MA estimates are better than 
estimates obtained by previous work due to [4]. 
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Figure 5. Comparison of transverse relaxation moduli obtained by the MA and the work due to 
Malekmohammadi et al. [4] to FE reference solutions, for resin volume fraction equal to 7.3% 
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