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Abstract
This paper presents a new method suitable for modelling kinking discontinuities within a finite
element framework. The proposed method effectively implements local remeshing in terms of
solution, but is computationally more efficient than remeshing; it can be readily implemented
in relatively closed FE codes; and it allows (sub-)elements near a crack tip to readily share
information. The finite element architecture of the new method is similar to that of the phantom
node method. Validation examples show that the proposed method can predict stress intensity
factors and crack propagation accurately. An application example shows that the proposed
method can predict the transition from matrix cracking to delamination in cross-ply composite
laminates by accurately representing T-shaped cracks inside an element.

1. Introduction

This paper focuses on the accurate numerical representation of complex networks of evolving
discontinuities in solids, with particular emphasis on cracks. The limitation of the standard
finite element method (FEM) in approximating discontinuous solutions has motivated the de-
velopment of re-meshing [1], smeared crack models [2, 3], the eXtended Finite Element Method
(XFEM) [4, 5, 6] and the Phantom Node Method (PNM) [7].

We propose a new method which has some similarities to the PNM, but crucially: (i) does not
introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not
require numerical integration over only part of a domain; (iii) can incorporate weak discontinu-
ities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple
and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same
solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is
conceptually simpler than the PNM.

2. Theory

The proposed floating node method is described in detail elsewhere [8, 9]. Fig. 1 compares
schematically the method to the well known Phantom Node Method. Additionally, Fig. 1a can
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also be interpreted as an automated form of local remeshing. Fig. 2 shows examples of different
types of discontinuities that can be represented with the method. The method can be used with
cohesive elements and with VCCT for crack propagation [8, 9].

3. Validation

3.1. Convergence and accuracy

We compare the mesh convergence of the PNM and FNM in the evaluation of stress intensity
factors (SIF) for an edge crack propagating in mode I (Fig. 3a). The numerical evaluations for
the FNM are performed with VCCT, and for PNM with VCCT as implemented in the commer-
cial software Abaqus [10]. Further details are given in [8, 9]. The results are summarized in
Fig. 3b. The FNM can be seen to converge monotonically and more rapidly than the PNM used
for comparison.

We now evaluate the stress intensity factors (SIF) for a centre slant crack (Fig. 4a) obtained by
the FNM against the corresponding analytical solutions [11] in mode I (KI) and mode II (KII),
for different orientations θ of the crack. The numerical evaluations for the FNM are performed
with VCCT. For FNM with VCCT, when the crack separates the original element domain into
a triangle and a pentagon, both the partitions shown in Fig. ?? and that shown in Fig. ?? are
employed. Further model details are given in [8, 9]. The results are summarized in Fig. 4b. The
data-points labelled ‘Int. 1’ are obtained with FNM-VCCT using the partition in Fig. ??, and
the data-points labelled ‘Int. 2’ are obtained with FNM-VCCT using the partition in Fig. ??.

3.2. Crack propagation

A double cantelever beam (DCB) test is used to simulate a propagating crack for a case in which
the analytical solution (using corrected beam theory [12]) is known. Further model details are
given in [8, 9]. The cohesive zone approach with a standard bi-linear law and a stress-based
criterion is employed to determine the initiation and propagation of a crack.

This case is analysed with both the FNM and the PNM (the latter implemented in the commer-
cial software Abaqus [10]). For the FNM, the transition element shown in Fig. ?? is employed
for the element in front of the crack tip. The results are shown in Fig. 5b.

4. Application: modelling of the growth of matrix crack density in a cross-ply laminate

In this section, we analyse the problem of interaction between matrix cracks and delamination
on a cross-ply [02/904]S laminate of toughened glass/epoxy, tested in tension by Joffe and Varna
[13]. In this problem, correctly capturing the matrix crack/delamination interaction mechanism
is important for the accurate prediction of matrix crack saturation and consequent transition to
delamination.

Fang et al. [14] (see Fig. 6a) showed that using non-matching meshes at a crack intersection
(e.g. using the PNM for the 90◦ matrix cracks in the 90◦ ply and cohesive elements at the in-
terface for the delamination) leads to an inaccurate representation of the displacement jump
(and hence of the cohesive traction) at the interface. Capturing correctly the displacement jump
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Figure 1: Comparison between the Phantom Node Method and the Floating Node Method.
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Figure 2: Examples of different discontinuities that can be modelled by the Floating Node
Method (see key in Fig. 1b).
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Figure 3: For this edge crack model, the FNM converges monotonically, unlike the PNM.
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Figure 4: The FNM captures the SIF well in modes I and II for different angles θ.
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Figure 5: DCB validation case, showing that, for the same mesh seeding, the FNM predicts
accuratelly the force (P) vs. displacement curve while the PNM overpredicts the force.

requires further DoF at the intersection between cracks (Fig. 6b); the FNM method is particu-
larly well suited to model intersecting cracks, capturing correctly the displacement jump at the
interface.

Based on the FNM, an element specifically designed for cross-ply laminates is formed with both
real nodes and floating nodes, as shown in Fig. 6c. It makes use of the known position of the
interface, so that the interface is not seeded with real nodes (Fig. 6d); instead, it is represented
by cohesive elements formed with floating nodes. In this way, minimum seeding is required
during preprocessing.

Since the loading is uniform in tension, a 10% reduction on transverse tensile strength and mode
I critical energy release rate is introduced in the element at the centre so as to initiate failure at
the centre of the model. The model, Fig. 7a, represents half of the laminate, with symmetric
boundary conditions applied on the bottom surface of the 90◦ plies. Further model details are
given in [8, 9].

Figs. 7b and 7c show the failure pattern predictions for the laminate when using the FNM
element from Figs. 6c and 6d. To demonstrate how crucial it is to have matching meshes at
the crack intersections, a second model was created, differing only in that only one cohesive
sub-element is used to model the delamination in each FNM element (as in Fig. 6a), rather than
two. This second model corresponds very closely to a model in which matrix cracks in the 90◦

ply are modelled with the PNM and the delamination is modelled independently using cohesive
elements. The resulting crack pattern, at the same level of strain as in Figs. 7b and 7c, is shown
in Figs. 7d and 7e. The second model predicts significantly less delamination than the FNM
model. The simulation shows that delamination does not start from the element containing
the matrix crack; instead, it occurs firstly in the elements next to the cracked element. This
non-physical sequence of delamination propagation is expected in the formulation of the non-
matching meshes (Fig. 6a).

Fig. 8 shows the crack density vs. applied strain predictions. While both models are able to
capture the growth of crack density with applied strain, only the first model (with matching mesh
at the crack intersections) is able to predict saturation accurately; the second model continues
to predict an increase in crack density, albeit at a lower growth rate, after saturation should
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Figure 6: Modelling the intersection between matrix cracks and delamination with non-
matching meshes fails to capture the displacement jump; the FNM can address this.

have occurred. This example thus demonstrates the capability of using the FNM to construct
elements for the modelling of specific geometries and complex crack networks.

5. Conclusion

This paper proposes a floating node method which can be implemented in existing finite element
packages. The paper demonstrates that the floating node method has the following advantages
over alternative methods, in particular the phantom node method: (i) it does not introduce an
error on the crack geometry when mapping from physical to natural coordinates; (ii) the in-
tegration is simple, as it does not require numerical integration over only part of a domain;
(iii) it leads to the same solution as a finite element mesh where the discontinuity is represented
explicitly; (iv) it can incorporate weak discontinuities and cohesive cracks readily; (v) it can
be readily combined with VCCT; (vi) it provides accurate predictions for stress intensity fac-
tors under generic mode ratios; (vii) it is ideally suited for the representation of multiple and
complex networks of (weak, strong and cohesive) discontinuities; and (viii) it can successfully
predict certain interactions between matrix cracking and delamination.
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