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Abstract 
The paper deals with modelling of physical micro-fields, mainly thermal and mechanical, in 
large aspect fibrous composite materials. Interactions of matrix and reinforcing fibres involve 
high gradients of physical micro-fields that caused difficulties in reliable numerical 
simulation of composite behaviour. The developed Method of Continuous Source Functions 
(MCSF) eliminates disadvantages of known numerical methods and reduces the solution 
considerably. It uses fundamental solution and its derivatives to simulate the interaction of 
large aspect ratio fibres with matrix. Material properties of both matrix and fibres are 
assumed to be homogeneous and isotropic. The results of numerical examples and micro-
fields distribution are shown in paper. 

 
 

1. Introduction 
 

Fibre-reinforced composites have been widely used in engineering applications due to the 
superiority of their electro-thermo-mechanical properties over the single matrix. 
Understanding the physical behaviour of these fibre-reinforced composites is essential for 
structural design. The aim of this chapter is to show the Method of Continuous Source 
Functions (MCSF) developed by the first author [1] for composite materials reinforced by 
finite fibres. We will give the mathematical basis of the MCSF, some results and discussion to 
the toughening mechanism conductivity of composite materials reinforced by straight fibres 
of finite length.  
 
2. Computational model 
 
We assume all matrix materials and fibres are homogeneous and isotropic, the dimensions of 
the matrix are infinite (i.e. we will deal with the infinite matrix of material with homogeneous 
material properties) and models are restricted to linear behaviour. Primary variables can be 
scalar like the temperature field in heat conduction, or vector like the displacement field in 
deformation of elastic bodies by forces. All fields are split into two parts, the homogeneous 
part corresponding to the homogeneous problem of the matrix without fibres and the local 
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(complimentary) part simulating the influence of interactions of fibres with the matrix. We 
will especially investigate the local fields in the matrix of the composite material. 
 
Due to large aspect ratio of fibres, the toughening in elasticity and increase of conductivity in 
heat conduction of the composite material is realized especially by corresponding effect in the 
fibre axis direction. Because of this, the inter-domain compatibility between fibre and matrix 
can be simplified and to assume that the temperature, displacement, strain, stress, etc in all 
points of the cross-section are equal to each other. This property of the model is equivalent to 
assumption of zero bending stiffness of fibre, which is important to reduction of 
computational model and to correct simulation of composite materials reinforced by fibres 
with large aspect ratio as the nanotubes and similar fibres. The inter-domain compatibility are 
satisfied in discrete collocation points (Figure 1) on the fibre-matrix interface. 
 

 
Figure 1. Distribution of source functions and collocation points. 

 
The interaction of fibres with matrix is simulated in the MCSF by source functions, which are 
1D-continuously distributed along the fibre axis. The source functions are fundamental 
solution of corresponding problem (heat sources in heat conduction and forces in elasticity) 
and their derivatives. The forces are directed in the fibre axis direction. These source 
functions, however, are not able to simulate correct the interaction of fibres with the matrix. 
In addition the derivatives of the source functions, heat dipoles and force dipoles and force 
couples are included along fibre axes in order to simulate correctly the large axial stiffness of 
fibres to negligible bending stiffness and also the interaction of fibre with other fibres. The 
dipoles and couples are derivatives of the source functions. 
 
Temperature field induced by a unit heat source acting in arbitrary point of infinite domain is 
the fundamental solution for heat problems and it is given by: 
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r is the distance of the field point t and source point s, where the heat source is acting at, i.e. 
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with the summation convention over repeated indices. 
 
Temperature field induced by a unit heat dipole in xi direction is: 
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Similarly displacement field in an elastic continuum caused by a unit force (upper index F 
denotes force) acting in the direction of the axis xp is given by the Kelvin solution as it is 
known from BEM [2]: 
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where G and ν are shear modulus and Poisson’s ratio of the material of the matrix. δij is the 
Kronecker’s delta.  
 
In the numerical evaluation we have to solve an integral equation, in which the intensity of 
source functions is approximated by 1D quadratic Non-Uniform Rational Basis Splines 
(NURBS) [3], which enable to define shape functions to have continuous first derivative over 
the whole integration path and non-equal distribution of nodal points. Basic variables are 
temperature in heat and displacement in elasticity problems.  
 
The computations are performed on the homogeneous field of matrix material and boundary 
conditions (BC) are prescribed in collocation points along fibre boundaries. In the present 
models it is considered that the fibres are straight and parallel. As the BC are not known a 
priori, the problem is solved iteratively and it is assumed that the fibres are superconductors in 
heat and rigid in elasticity problems in the first iteration step. This is equivalent to the 
assumption of constant gradient of temperature and displacement in fibre axes direction, if the 
fibres are straight. This corresponds to constant heat flow in heat problem and constant strain 
in elasticity along a fibre. Finite heat flow and temperature distribution in the heat flow 
problem and strain and displacements in elasticity along fibres are computed in the next steps 
of iteration process. 
 
The temperature/displacement change of the centre of each fibre by the interaction is not 
known a priori in both the heat and elasticity problem. It is obtained by energy-
balance/equilibrium condition in each fibre. This is realized by including further r.h.s. (right 
hand side) by prescribing temperature/displacement in corresponding fibre centre equal to one 
and zero for the other fibres. 
 
See [1,4] for more details about the computational model.  

 
2. Computational results 

 
As the material of both fibres and matrix is considered to be linear, all variables are 
dimensionless and so, it is supposed that material constants of the matrix, conductivity km 
and modulus of elasticity Em, are equal to one. The fields in heat conduction and elasticity are 
similar, temperature correspond to displacement and heat flow to stress/strain. Because of 
restriction on the length of paper three examples are chosen to show the composite behaviour. 
In the examples, the radius of fibres R=1, the length of fibres L=1000 in the first (heat 
conduction) and L=100 in the last two (elasticity) problems. The fibres are regularly 
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distributed, parallel to each other with overlay in fibres' direction x3. The gaps in fibre 
direction x3 is 40 in the first two examples and 5 in the third one and the distance between 
fibres in perpendicular direction is 100, 10 and 4, respectively in the examples (see Fig. 2). 
All quantities concerning fibres are in fibre direction x3. 
 

 
Figure 2.  Fibre alignment in the matrix in example 2. 
 
Heat flow in corresponding homogeneous cases will be q3 = 1 and strain ε33 = 1. The material 
of fibres is close to superconductive material with coefficient of conductivity kf = 50 000 in 
the first example and the modulus of elasticity is Ef = 1000 for elasticity problems. The fibres 
are arranged symmetrically in all directions. 
 

 

Figure 3. Heat flow along fibres. 
 

The models contain finite number of fibres in infinite matrix (63 fibres, Fig. 2). Heat flow and 
temperature along fibres relative to the temperature in the fibre centres are shown in Figures 3 
and 4, stress and displacement in fibre axes direction of points along fibre (also related the 
displacement in the centre of corresponding fibre) are presented in Figures 5 and 6. The 
results of the first iteration steps are shown by dashed lines, those of the last iteration step by 
full line. Temperature/displacement changes in the composite relative to their values for 
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homogeneous material (given in parentheses) in the centre of fibres are given in the Tables 1 
and 2. 

 

 

Figure 4. Temperature along fibers.  
 

 

 

Figure 5. Axial stress along fibres for examples 2 and 3. 
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Figure 6. Displacement in axis direction along fibres for examples 2 and 3. 
 
 
 

Level x1, x2, x3 2, 1, 1 0, 1, 1 1, 1, 2 0, 0, 2 2, 0, 2 2, 2, 2 

temperature (520)-44.8 (520)-106.8 
(1040)-
244.4 

(1040)-
261.1 

(1040)-
224.5 

(1040)-
194.5 

Table 1. Temperature change in the fibre centres 
 
 
 

Level x1, x2, x3 2, 1, 1 0, 1, 1 1, 1, 2 0, 0, 2 2, 0, 2 2, 2, 2 

Displacement 
in example 2 

(70) - 

21.54 

(70) - 

24.82 

(140) - 

54.75 

(140) - 

58.76 

(140) - 

49.84 

(140) - 

42.41 

Displacement 
in example 3 

(52.5) -
36.03 

(52.5) -
40.58 

(105) -
82.21 

(105) -
86.34 

(105) - 
76.60 

(105) -
68.15 

Table 2. Displacement of the fibre centres 
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3. Discussion and conclusions 
 
In the paper we present the use of MCSF for computational simulation of the mechanism of 
increase conductivity and toughening by short fibres in composite materials. The MCSF is a 
quasi-meshles method using 1D continuous distribution of source functions along fibre axes 
so, that the interdomain compatibility between fibres and matrix is satisfied in collocation 
points. Present models simulate the interaction of matrix with a patch of finite number of 
fibres regularly distributed in an infinite matrix. Material of the fibres is supposed to be 
considerably better conductor and considerably stiffer than the matrix. As the model has some 
inaccuracies and restrictions, it will help to understand the composite material properties from 
the influence of fibres, their configuration and topology. 
 
Although the temperature (scalar) field in heat conduction and displacement (vector) field in 
elasticity are described by integral equations with different intensity of the singularity 
(stronger singularity is in the elasticity problem), the behaviour of both problems is similar. 
Equivalent fields in both problems are temperature/displacement and heat flow/strain (stress). 
 
As for the presented models simulate the local reinforcement of the matrix, one can observe 
that the fields in middle fibres and those on the boundaries of the reinforcement behave 
differently and the fields are not symmetric along fibres. Similar effect is to be expected on 
the boundaries of composite of finite dimensions. 
 
The ends of fibres influence strongly the fields not only in the matrix, but in neighbour fibres 
as well. This effect is not so clear from the presented figures as all fibres are shifted so that 
their centres have coordinate x3=0. One has to imagine the configuration of fibres in the 
space, the overlap and gaps in fibre direction in order to understand better the figures. This 
and previous studies [5,6] on the fields near fibre ends document the importance of detail 
studies of these fields for evaluation of interaction of closest fibres and matrix for 
understanding the total composite behaviour and defining macroscopic material properties 
from microscopic fields. 
 

The results document that the finite number of fibres in the infinite matrix simulates partial 
reinforcement of the matrix. This is similar to the composite inclusion in a homogeneous 
matrix. It is clear that also other BC (the form of the finite domain, interface with part of 
different material properties, etc.) are parameters influencing the resulting material properties. 
The present models simulate straight fibres, however, the fibres in real material can be curved 
with random configuration. The MCSF can be used also for such cases, but further 
generalization of models will be necessary (to simulate cross sectional changes of temperature 
and displacements in fibres by BC on fibre-matrix interface to local direction of fibre axis, 
etc.). Also the RVE for homogenization has to contain larger number of fibres for more 
general configuration in order to represent the material properties in macro-dimension. 
 
In present models we solve problem for infinite matrix with BC along fibre boundaries and 
the finite material fibre properties are included iteratively. This is because the BC are not 
known a priori and the corrections are obtained integrating results from the preliminary steps. 
If the material properties of fibres and matrix are too different and fibres are not too close to 
each other, the solution is obtained in one or two iterations. In problems like those presented 
here, the convergent results are received in not more than 8 steps.  
 



ECCM16 - 16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

 
 

Present models do not include nonlinear effects in all material behaviour of matrix and fibres, 
large deformations, etc. We have to realize that the micro-fibres will be often curved and the 
curvature can change with deformation and this will contribute to nonlinear behaviour of 
composite, too. 
 
The models were programmed in MATLAB and they are suitable for parallel computing and 
both versions of the programs are available.  
 
We would like to emphasize that the models can be used to simulate also composite materials 
reinforced by nanofibres. Although the nanofibres have cross-sectional dimensions in 
nanometres and so, the methods of continuum mechanics cannot be used to model such 
structure, if however the aspect ratio of the fibres is large, then the length dimensions satisfy 
conditions when continuum mechanics can be used for the simulation. 
 
One can obtain also other fields from the models, especially those from elasticity, like shear 
stresses in the fibre-matrix interface, maximal stresses in the matrix, etc. [5], which are 
important for damage and fracture analysis of this kind composite materials. It is expected 
that all kind of problems will be important for design and optimization of the composite 
materials. In this way one can obtain functionally graded materials (FGM) with properties 
suited to the form and special conditions of use of the structure. 
 
MATLAB codes for parallel and serial computations of the models can be obtained from and 
any questions will be answered by vlado.kompis@gmail.com. 
 
References 
 
[1] V. Kompiš, M. Kompiš and M. Kaukič. Method of Continuous Dipoles for Modeling of 

Materials Reinforced by Short Micro-Fibers. Engineering Analysis with Boundary 
Elements, 31, 416-424, 2007. 

[2] C.A. Brebbia, J.C.F. Telles and L.C. Wrobel. Boundary Element Technique, Theory and 
Applications in Engineering, Springer Verlag, New York, 1984. 

[3] L. Piegl and W. Tiller. The NURBS book, 2nd ed. New York, Springer-Verlag, 1997. 
[4] V. Kompiš, Z. Murčinková, M. Žmindák. Toughening mechanism for fibre of middle-

large-aspect-ratio-reinforced composites. In Q. H. Qin, J. Ye, editors, Toughening 
Mechanism in Composite Material, in press Woodhead Publishing Ltd., UK 

[5] V. Kompiš, M. Štiavnický, M. Kompiš, Z. Murčinková and Q.H. Qin: Method of 
continuous source functions for modeling of matrix reinforced by finite fibres, in V. 
Kompiš, ed.: Composites with Micro- and Nano-Structure, Computational Modeling and 
Experiments, Springer Science + Busines Media B.V., Dordrecht, 27-46, 2008. 

[6]  V. Kompiš, Z. Murčinková, M. Očkay: Temperature fields in short fibre composites, in 
J. Murín, V. Kompiš, V. Kutiš, eds.: Computational Modelling and Advanced 
Simulations, Springer Science + Busines Media B.V., Dordrecht, 99-116, 2011. 

 


