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Abstract 

In the aircraft industry, the method for designing metal-composite joints is mainly based on 

conservative metallic calculation rules and on applying high safety factors. The reason is that 

the influence of errors due to manufacturing is not well-known, and few studies deal with this 

issue. This study first presents the evolution of load transfer inside a double-lap joint with two 

bolts, in presence of bolt-hole clearance and position error. Then, a 2-D analytical numerical 

model is detailed, in order to evaluate the load distribution in multi-bolt shell structures. 

 

 

1. Introduction 

 

The increasing use of composite materials in the aeronautical field leads to metal-composite 

joints with a large number of fasteners. The choice of joint dimensions, fastener diameter, 

number of fasteners, spacing between rows of fasteners, is well understood now, thanks to 

many studies about their influence [1], [2], [3]. However, the effect of hole-location errors on 

the assembly mechanical performance is less well controlled. To reduce location error and 

thus ensure mechanical performance, fastener holes are made in a single drilling operation 

which requires a complex flow-process grid. This assembly process is incompatible with cost-

efficient interchangeability rules and contributes in the increase in joint manufacturing and 

maintenance costs. 

Few studies have been published dealing with the influence of geometrical errors on the 

mechanical behaviour of joined structures. This can be explained by the fact that this issue 

needs an accurate stiffness model for each constituent of the assembly (joined parts, fasteners) 

which controls load distribution between fasteners. Moreover, even for low hole-location 

errors or clearance, load distribution between fasteners is controlled by non-linear behaviour 

of materials, which generates a local softening [4], [5]. Another problem, related to 

experimental validation, is found in introducing a controlled flaw into samples and developing 

specific instrumentation to analyse the effect of the flaw [4]. 

The load distribution in bolted joints has been investigated with different levels of 

complexity. Some studies take the fasteners as rigid bodies and define the material behaviour 

of structures as elastic linear [6], others integrate nonlinearities due to contact issues 

(clearance, friction, etc.) and also bolt stiffness [7], [8], [9], [10]. These models do not usually 

include nonlinear behaviour due to material damage in the fastener or around the hole. Some 
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studies take into account material damage [5], [11], [12], [13], [14], [15], [16], [17], [18]. In 

[5], [11], [13], [18], a 3-D finite element model is used to study the progressive degradation 

implied by bearing loading. Thus several damage mechanisms are introduced in this model, 

such as delamination, matrix cracking and fiber compressive failure. However, such a 

complex model cannot be applied to a large structure with multi-bolt joining with a view to 

study the effect of design parameters. In [12], the most critically loaded fastener is first 

determined using a linear analysis, and then a specific study including damage mechanisms 

focuses on this location. Nevertheless, the effect of local softening on load redistribution 

between fasteners is not represented. In [15], [17], a 1-D analytical model is proposed in 

which each bolt is modelled by a spring with a nonlinear force displacement law in order to 

represent the local softening due to bearing damage. The evolution of load transfer rate during 

loading is thus more easily predicted according to joint dimensions and material behaviours. It 

should be noted that clearance can be included in the spring force displacement law. Gray and 

McCarthy [16] included nonlinear bolt behaviour previously proposed [15] in a user-defined 

10-node super finite element which can be used with shell elements to simulate large-scale 

structures. Results on 20-bolt joints are presented and compared with experimental data in 

terms of strain distribution. Although good agreement is found, the effect of nonlinear 

behaviour is not addressed. 

The approach proposed in this work consists in developing two models with different levels 

of complexity. The first one is a 1-D analytical model which is dedicated to study the 

influence of joint parameters in preliminary design stages. The second model is a 2-D 

analytical numerical model which is dedicated to evaluate the mechanical performance of 

actual multi-bolt joint by taking into account joint and part architectures. In these two models, 

bolt compliance, nonlinear bolt behaviour (i.e. contact with clearance and damage), and hole-

location error are taken in account. While nonlinear bolt behaviour is introduced at the bolt 

scale in the 1-D analytical model under the form of a force-displacement response, it is 

explicitly introduced in the 2-D model with local behaviours. 

 

 

2. Description of the 1-D analytical model 
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Figure 1. Loads transmitted by the bolts versus applied load for Cgeom = 0.025 mm and δp = 0.150 mm. 
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The model consists in dividing the n-bolt joint in n+1 sections. Each adherent section and 

each bolt are considered as a spring. Elastic linear behavior are assumed for adherent section 

springs while a non-linear behavior is used for bolt spring in order to account clearance,  

progressive contact establishing and composite damage. Hole-location errors are introduced in 

term of initial displacement conditions. The model statement and identification are fully 

described in [19]. 

The model was validated by a 3D finite element model and experimental tests on double-lap 

aluminum-composite joints with two bolts. The evolution of the load transmitted by each 

fastener is plotted in Figure 1 for both the analytical model and the FEM for a clearance of 

0.025mm and a location error of 0.150mm. Several stages can be identified along the curves 

obtained with the analytical model. Preload caused by hole-location error generates two 

opposite loads on bolts. During the first stage of external load application (1), the second bolt 

is unloaded while the first bolt is loaded more. When the second bolt is totally unloaded, the 

clearance recovery stage (2) starts. During this stage, the first bolt transfers the whole applied 

load. Once the clearance has recovered, the second bolt is in contact with the adherent holes 

again, and both bolts can be progressively loaded simultaneously (3). Bolt #1 reaches the 

bearing degradation threshold 
bF , first, which implies a decrease in load transfer rate (4). 

Consequently the load is transferred to the second bolt, until it reaches 
bF  in its turn (5). 

Furthermore, from Figure 1 it can be concluded that the analytical model is able to replace a 

complex finite element model for load transfer estimation in a multi-bolt joint with clearance 

and location error. The FEM, which contains 760,000 degrees of freedom, needs about 12 

hours of calculation time, whereas the analytical model only takes a few seconds. 

 

This analytical model is quite simple and takes a lot of parameters and phenomena into 

account, but it can only be applied to joints with one row of bolts loaded in the bolts line. 

 

3. Description of the 2-D model  
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Figure 2. Description of a multi-bolt joint with coordinates systems 
 

3.1. Problem statement 

 

We focus on a multi-bolt composite-composite or metal-composite joint, made of a part 1, 

with a thickness h1 and called adherent 1, and a part 2, with a thickness h2 and called adherent 
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2 (Figure 2). The global coordinate system is defined as  ,X Y . The Figure 3 shows the local 

polar coordinate systems  ,k kx y  and  ,k ku v , whose origins are located at the center of the 

fastener pin. kx  is defined as the direction of the loads p

kF  transmitted by the adherents #p to 

the fastener. The radius of the fastener #k is equal to 
k k kR a   , where 

ka  is the hole radius 

of adherents #p associated to fastener #k and 
k is the radial bolt-hole clearance associated to 

fastener #k. For each bolt #k, 
ka  and 

k  are assumed equal for the two adherents. 

Adherents 1 and 2 are modelled by continuum shell elements which allow representing 

complex geometry with a reasonable calculation time. Adherent holes are explicitly 

represented with a moderately refined mesh which allows accessing the stress field around the 

hole. Hole-location error can then be directly integrated on adherent geometry. Bolt and 

adherent-bolt contact models are based on the Madenci’s model proposed in [8]. 
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Figure 3. Definition of polar coordinate systems and holes dimensions for the fastener #k 
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Figure 4. Description of contact between fastener #k and hole boundary 
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As proposed by Xiong and Poon [9] by modelling the fastener as a short beam, the 

compliance kS of fastener #k can be calculated as follow: 
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where  p p

k k kF F x  is the amplitude of the load transmitted by fastener #k and k  is the 

relative displacement between the two fastener pin sections in mid-plane of each adherent as 

illustrated in Figure 3. 
k  is a shear coefficient parameter which is equal to 1.33, 

k kE I is the 

bending stiffness and 
k kG A is the shear stiffness of the fastener pin. 

The relative normal displacement  kU  applied to adherents between contact center points 1

kI  

and 2

kI  defined in Figure 4 are then related to the transmitted load by the following equation: 

 

    2 1, 0 , 0 2        k k k k k k k k k kU u a u a S F  (2) 

 

where  ,p

k k ku a  is the normal (i.e. on ku ) displacements of adherent #p. The bolt load is 

transmitted through the contact zones between fastener and adherent holes. In presence of 

friction between fastener pin and adherent holes, the contact zone in each adherent #p for each 

fastener #k is divided in no-slip and slip zones, delimited by angles 
1

p

k , 1

p

k , 2

p

k and 
2

p

k  

(Figure 4). 

The boundary conditions along the fastener holes can then be defined as: 

 

      , , 0 cos   p p

k k k k k k ku a u a , with 2 2,p p

k k k       (3) 

 

      , , 0 sin   p p

k k k k k k kv a u a , with 1 1,p p

k k k       (4) 

 

    , ,p p

k k k k k ka f a    , with 
2 1,p p

k k k        

  (5) 

    , ,p p

k k k k k ka f a     , with 1 2,    
p p

k k k  

 

    , , 0p p

k k k k k ka a     , with 2 2,p p

k k k       (6) 

 

where p

kv  is the tangential (i.e. on p

kv ) displacement of adherent #p, f  is the friction 

coefficient, p

k  and p

k  are respectively the normal and shear stress in the adherent #p. The 

continuity equations which define the contact angles give: 

 

  , 0p

k k ka   , with 2 2,p p

k k k       (7) 

 

    2 2, , 0p p p p

k k k k k ka a       (8) 
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    1 1, ,p p p p

k k k k k ka a      (9) 

 

    1 1, ,p p p p

k k k k k ka a      (10) 

 

The equilibrium of the fastener #k gives: 

 

 1 2 0 k kF F  (11) 

 

The last equation gives the relation between the force transmitted by the adherent #p to 

fastener #k and the stress field in adherent #p: 

 

    
2

0

, cos , sin 0p p p

p k k k k k k k k k k kh a a a d F



             (12) 

 

3.2. Solving method 

 

For solving this problem, Madenci [8] uses the boundary collocation technique, made possible 

by the use of the complex analytic functions introduced by Lekhnitskii [20] to represent the 

adherent elastic deformations. 

In the present study, an iterative procedure is proposed to solve both the analytical bolt and 

adherent-bolt contact formulation and a finite element model (FEM) is used for the adherents. 

At each iteration, the stress field obtained from the FEM is used to calculate the load 

transmitted by each fastener (Equation (12)) and to readjust the contact angles according to 

Equations (7) to (11). Equations (1) to (6) allow then to update the boundary conditions on 

each adherent hole. Without hole-location error, bolt and adherent holes being initially 

coaxial, the clearance disables the contact. Contact angles are thus initially taken equal to 

zero. Hole-location error can otherwise be introduced progressively in a first step by 

decreasing a virtually augmented clearance up to the actual value. This iterative procedure can 

be implemented in an implicit or explicit scheme. The user-subroutine facilities of Abaqus 

software were exploited to combine the analytical equations with the FEM. 

First simulations were dedicated to double-lap aluminum-composite joints with two bolts in 

order to compare the 2-D model to 3-D FEM and 1-D model. Comparison mainly aims at 

evaluating the relative performances in term of calculation time since the phenomena implied 

in the three different models are identical. First results are encouraging even if the calculation 

time proves to be quite dependent to the iterative procedure algorithm. 

 

4. Conclusions 

 

Two models with different levels of complexity were developed in order to study the effect of 

hole-location error on the load distribution in multi-bolt joints. The work puts emphasis on 

non-linear behaviour generated by friction phenomena and clearance in bolt-adherent contact 

and material damage. 

An analytical model was devoted to double-lap joint with several bolts lined up in a row. This 

time-efficient model allows parameters influence studies, but cannot be applied to complex 

structures. The 2-D model elaborated here is balanced between a numerical part, to represent 

the geometry of assembled parts including hole-location error, and an analytical part, for 

contact issues, bolt-hole clearance and bolt pin deformation. This model makes possible to 

obtain the load in each bolt and plan stress field of composite parts while avoiding the 
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meshing of fasteners. The compromise between calculation time and result accuracy appears 

very interesting. 
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