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Abstract  
A top-down analytic approach is proposed to analyze interlaminar stresses in 
multidirectional symmetric laminates under tensile load. The coupling effects of each ply are 
compensated by adjacent plies and the total behavior is similar to an isotropic material, from 
a deformation point of view. Nevertheless, in-plane and out-of-plane stresses appear in each 
ply, preventing the coupling deformations. The maximum values of out-of-plane stresses are 
at the edges of the specimen. In a first step, a half of a symmetric laminate is considered for 
determining forces and moments per unit length that prevent the global deformation. In a 
second step, each ply is analyzed with the data obtained from the previous sublaminate.  

 
 

1. Introduction  
 

According to the laminated plates theory, coupling effects between membrane and plate 
behaviors do not occur in the case of symmetric laminates. In many cases, coupling effects are 
related to the generation of shear strains under the application of axial loads. In the membrane 
case, normal strains are uniform and the generated shear strains have uniform distribution. 
When normal shear-coupling occurs in the plate behavior, as the distribution of normal strains 
is linear, induced strains have also linear distribution and then, twisting curvatures appear [1].  
 
The freedom of a deformation mode is related to the absence of stresses relative to that 
deformation modes. In a opposite manner, when deformation modes are constrained, stresses 
must act in order to impose the constraint of deformation. Therefore, when in a symmetric 
laminate membrane-plate coupling does not exist, stresses must adopt the values for 
constraining deformations. 
 
In the present work, the analysis carried out for a symmetric angle-ply laminate [1] is 
generalized for symmetric laminates and applied to a quasi-isotropic laminate subjected to a 
uniform tensile load. In this case bending and twisting curvatures and shear strains are null. 
Then, normal strains are uniformly distributed in the thickness of the laminate and stresses 
appear in order to constraint the tendency of each lamina for shear deformation. In a first step 
a half of the laminate is considered, determining the bending and twisting moments that must 
act on this part for obtaining null curvatures. Then, interlaminar shear stresses are determined 
based on equilibrium equations and the assumption of a displacement field.  
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2. Analytic approach 
 

2.1. Displacement and strain field 
 
The following displacement field has been assumed: 
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where w is the normal deflection of the laminate and thus the laminate has been considered to 
be inextensible in z-direction. u and v are the in-plane displacements of the laminate which 
have been assumed to be linear functions of the coordinate z. θy is the twisting angle of the 
laminate. According to Eq. (1)3, it is assumed that specimen remains straight along the width. 
This assumption is based on the fact that the length-to –width ratio of the specimen is 
considered to be great. From Eqs (1) the components of the strain field are: 
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where, 
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According to Eq. (2)5 it results that x zx yyθ γ θ ′= + . Differentiating with respect to y and 
replacing in Eq. (3)6, the twisting curvature is: 
 
 , , , 2xy s x y y x zx y yκ κ θ θ γ θ′= = + = +  (4) 
 
2.2. Stress field and resultant forces and resultant moments 
 
The stress-strain relations for in-plane components in expanded and abbreviated form without 
taking into account hygrothermal effects are: 
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where{ }k
σ are in-plane stresses at lamina k, [ ]k

Q are the reduced stiffness coefficients of 

lamina k, { }0ε are strains of the middle plane and { }κ are the curvatures of the middle plane. 
Force and moment resultants concerning in-plane stress components are given by: 
 

 

0

0

0

xx xy xs xx xy xsx x

xy yy ys xy yy ysy y

xs ys ss xs ys sss s

xx xy xs xx xy xsx x

xy yy ys xy yy ysy y

xs ys ss xs ys sss s

A A A B B BN
A A A B B BN
A A A B B BN
B B B D D DM
B B B D D DM
B B B D D DM

ε
ε
γ
κ
κ
κ

⎧ ⎫⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪
⎪ ⎪⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (6) 

 
The laminate stiffness matrices are: 
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The inverse relation of Eq. (6) is: 
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Concerning shear stresses the notation of Daniel and Ishai [1] has been used, being yz q= , 
zx r=  and xy s= . In the case of out-of-plane shear strain components, constitutive relation at 
ply k is:  
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As it can be seen in Eqs. (2)5,6 γr and γq do not depend on z and therefore, they are the same as 
the mean values along the thickness rγ and qγ . Consequently, the out-of-plane constitutive 
equations have been expressed in terms of average values through the thickness: 
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where rτ and qτ  are mean shear stresses; Vr and Vq are stress resultants induced by τr and τq, 
respectively; and ijS are equivalent compliance coefficients. Since according to Eq. (2)6 

0qγ = , it results that 
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2.3.Equilibrium equations 
 
Equilibrium equations in terms of resultant forces and moments can be obtained integrating 
along the thickness the equilibrium equations concerning stresses [3]. Being 2h the thicknes 
of the laminate, equilibrium equations are: 
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It is worth noting that interlaminar stresses appear in equilibrium equations. Then, if a 
sublaminate is isolated from the laminate, it is necessary to take them into account. It would 
be desirable to isolate sublaminates with null stresses in the upper and lower faces. 
 

 
2.4. Analysis of the half of a symmetric laminate 
 
The half in thickness of a symmetric laminate is isolated. In general, this sublaminate has all 
kind of coupling effects. It has not stresses applied on the upper face. With respect to the 
lower face, interlaminar shear stresses are also null, due to the symmetry of the problem. 
Then, Eqs. (12) can be applied assuming that τq(±h)and τr(±h)are null.   
 
Variations in x have not been considered and transverse loads have not been applied. Then, 
according to Eq. (12)1 Ns is uniform and as Ns = 0 at the edges, Ns vanishes along the width. 
By analogous reasoning in Eqs.(12)2 it results that Ny = 0. Then, the laminate is supposed to 
be under the action of the Nx known force and Mx, My and Ms unknown moments. These 
moments can be determined as a function of κs from the following system of equations, 
coming from Eq. (8) after imposing 0x y yκ κ θ ′= = =  and Eq. (4): 
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With respect to Eq. (12)3 ( )z hσ −  is unknown. Otherwise, Eqs.(12)4,5 reduce to: 
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Differentiating with respect to y the 6th of Eq. (8), assuming that Nx is uniform along the 
width, replacing Eqs. (14) and considering Mx,y it results: 
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Differentiating Eq. (4) with respect to y and taking into account Eq. (11): 
 

 ( )
*

, * *

41 4qr ss
r yy ss ys r r

qq rr rr

S dhf d d h
S S S

γ γ γ
⎛ ⎞

− = − =⎜ ⎟⎜ ⎟
⎝ ⎠

 (16) 

 
Eq. (16) can be written as: 
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The general solution of Eq. (17) is: 
 
 1 2( ) sinh coshr y C ky C kyγ = +  (18) 
 
Replacing Eq. (18) in the expression of Ms obtained from Eq. (13) and imposing that Ms = 0 at 
the edges y = ±b, C1 and C2 are determined. Then, Mx, My and Ms can be known.  
 
2.5. Interlaminar stresses 
 
Equilibrium equations of stresses can be expressed as a function of applied moments and the 
applied force, that are related to Vr. Then, interlaminar stresses are obtained after integration, 
imposing interlaminar continuity conditions.  
 
2.4. Equivalent shear stiffness 
 
Equivalent shear stiffness coefficients are obtained equating the strain energy of the actual 
interlaminar stresses with the energy corresponding to averaged values. In that form, the 
effect of the variation of the interlaminar stresses along the thickness is included. 
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3. Top-down analysis in a quasi-isotropic laminate 
 
A quasi-isotropic [0,45,90,-45]s laminate is subjected to a tensile axial load nx in the 
longitudinal direction of the laminate as it can be seen in Figure 1.  
 

 
Figure 1. Quasi-isotropic laminate under tensile load. 

 
The analytical procedure for solving this problem has been carried out in two stages. At the 
first stage, the upper half of the laminate is extracted and analyzed separately. When the upper 
sublaminate is analyzed, only one half of the axial load is taken into account. This part would 
present a twisting curvature and two bending curvatures if it were alone. The sublaminate 
does not actually present any curvature as it is constrained by the twisting moment Ms and the 
bending moments Mx and My induced by the lower sublaminate.  
 
Therefore, the problem has been reduced to a quasi-isotropic sublaminate subjected to an 
axial force per unit length Nx

sub = nx/4b and unknown twisting and bending moments as it is 
shown in Figure 2.  
 

 
Figure 2. First stage of the top-down approach: extraction of the upper sublaminate. 

 
At the second stage, interlaminar shear stresses are determined according to the previous 
explanations and the results are compared to those obtained from the Finite Element Method 
using solid elements and the submodelling technique along the thickness. 
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4. Conclusions 
 
A top-down analysis is proposed in order to analyze interlaminar shear stresses in symmetric 
multidirectional laminates. It is applied to a quasi-isotropic laminate in order to determine 
interlaminar stresses caused by the absence of bending and twisting deformations. Results are 
compared with those obtained from numerical models of the FEM.  
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