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Abstract  
A method is developed to extract the fracture resistance and mode I cohesive law of non-
linear elastic-plastic materials using a Double Cantilever Beam (DCB) sandwich specimen 
loaded with pure bending moments. The method is based on the J integral which is valid for 
materials having a non-linear stress-strain relationship as long as there is no unloading at 
any material point. A numerical parameter study is performed for a wide range of material 
and specimen parameters to examine the accuracy of the method. In the range examined, the 
error of the method is less than 11% and thus it can be used to measure the fracture 
resistance experimentally and determine the mode I cohesive law including its shape. 

 
 

1. Introduction 
 

Linear elastic fracture mechanics (LEFM) is applicable when the fracture process zone is very 
small in comparison with all length dimensions (including the crack size) of a component [1]. 
In this case, the fracture process zone is embedded within a universal crack tip stress field (the 
so-called K-dominant zone). In contrast, when the size of the fracture process zone is 
comparable to or larger than any relevant specimen dimension, the fracture process zone 
should be modeled by non-linear fracture mechanics e.g. by a cohesive zone model [2,3]; 
describing the fracture process of materials through a traction separation relationship as 
shown in Fig. 1. 
 

 
Figure 1. Schematic illustration of the idealized cohesive law used in this study. 

cJ  is the mode I work of 

separation, 
c , the critical separation, the opening at complete failure, and ̂  is the peak traction. 

 
Since Needleman [4] introduced a mode I cohesive law in a continuum mechanics finite 
element model, cohesive zone modeling have been widely used in advanced numerical 
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models of materials and structures  e.g. [5,6]. Despite the widespread use of the cohesive laws 
in simulations, there are relative few studies on experimental determination of cohesive laws. 
Usually, the cohesive laws are determined indirectly by comparing experimentally measured 
specimen response (e.g. overall load-displacement relationships) with model predictions for a 
number of cohesive law parameters through an iterative guessing process [7]. This approach 
usually requires extensive computational effort to extract the cohesive law parameters and the 
shape of the cohesive laws is pre-defined and not an outcome from the experiments. 
 
A small number of experimental methods have been developed to determine cohesive laws 
directly [8,9]. For example Brenet at al. [9] used the so-called direct tension test where by 
measuring the displacement between two points across the failure plane, the opening of the 
cohesive law in principle can be measured. However, in practice, the separation is not always 
uniform across the width of the specimen. Thus, it can be argued that these techniques are 
either involved and/or it is difficult to achieve the correct conditions. A different approach is 
to obtain the cohesive law from measurements of the path independent J  integral [10] and 
the end-opening of the cohesive zone as proposed by Li and Ward [11]: 
 

 
*


d

dJ
   (1) 

 
where J  is the value of the J  integral and *  is the end-opening, i.e., the normal opening at 
the end of the fracture process zone. The J-integral must be analyzed along the external 
boundaries of the specimen to establish connection with the overall geometry and loading. 
The J  integral approach is valid also for problems involving large-scale bridging and a 
closed form analytical J-integral solution has been derived for the double cantilever beam 
(DCB) specimen loaded with pure bending moments [12]. Using this specimen Sørensen and 
Jacobsen [13] measured the mode I bridging/cohesive laws directly using Eq. 1. 
 
The studies mentioned above assume that the material outside the fracture process zone is 
elastic. However, many materials e.g. metals, polymers, composites have a non-linear 
material response that needs to be taken into account [5,6]. Thus, the idea of the present work 
is to explore if it is possible to extent the approach of Sørensen and Jacobsen [13] for 
materials that exhibit large scale yielding. We think that the DCB loaded with pure bending 
moments could be a suitable test specimen since a monotonic increase in the J-integral also 
requires a monotonic increase in the applied bending moments. This specimen will not 
experience global unloading during crack growth. We hope that this specimen may only 
undergo a small amount of unloading around the fracture process zone during crack 
propagation so that the J  integral approach can be used and consequently the fracture 
resistance and the cohesive law can be determined relatively accurate from experimental 
measurements. 
 
2. J  integral approach for non-linear material 

 
Fig. 2 shows the double cantilever beam (DCB) sandwich specimen loaded with pure bending 
moments used. The non-linear material is fixed to elastic beams. The thickness of the non-
linear material is h2 , and the thickness of each elastic beam is H . The fracture process is 
described by a trapezoidal cohesive law (see Fig. 1). Material #1 is taken to be linear elastic: 
 
 11

1#1#
11  E   (2) 
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where 1#E is the Young's modulus of material #1. Material #2 has a non-linear stress-strain 
law representing plasticity i.e. plasticity may form at the crack tip and in the beams (large 
scale yielding): 
 
 2

11211
2#2#

11  aE    (3) 
 
With this specific formulation, the J  integral can be calculated analytically. However, the 
method developed here is fairly general since numerical methods can be used for other non-
linear stress-strain relations when it is not possible to derive a closed-form solution for the J  
integral. 
 

 
Figure 2. Double Cantilever Beam (DCB) sandwich specimen loaded with pure bending moments. 
 
Due to symmetry only the upper half of the specimen (see Fig. 2) is considered next. Since 
the beam-ends are subjected to pure bending moments, the normal strain 22  varies linearly 
across the height of the specimen as shown in Fig. 3: 
 

           y






11    for     yhH   (4) 

 
where ̂  is the strain at the top of the upper beam (#1),  ˆ)(22 y . The other parameters, 
H , h ,   and the y  coordinate axis are defined in Fig. 3. 

 

 
Figure 3. Strain variation across the thickness of the upper half of the DCB specimen.   is the neutral axis in 
the local yx  coordinate system. 

 
It can be shown that the moment equilibrium for the upper half specimen, using Eqs. 2-4, 
leads to [14]: 
 
 02  CBA  

  (5) 
 
where the non-dimensional parameters A  and B  depend only on material properties and 
geometry [14], whereas C  is given by: 
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1#2EBH

M
C    (6) 

 
Thus,   can be computed analytically as a function of the applied moment, M . In the above 
it assumed that the position of the neutral axis does not translate with increasing the loading. 
 
The J integral is calculated then along a path ( i  with 5,1i ) along the external boundaries 

of the specimen as shown in Fig. 4. It can be shown, following the procedure in [14], that 
J integral equals:  
 
 52JJ ext    (7) 

 
where 5J  is the J integral along the external boundaries of the upper half of the DCB 

specimen and is given by: 
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  (8) 

 
In summary, by the use of (7) and (8), extJ  can be calculated from ̂  which again is a function 

of the applied moment, M  through (5) and (6). 
 

 
Figure 4. Two-dimensional specimen representation and J  integral path along the external boundaries. 

 
The J integral is calculated along a local integration path that encloses the fracture process 
zone [10,12]: 
 

 
*

0

)(


 dJ loc   (9) 

 
Differentiation of Eq. 7 gives Eq. 1. Since J integral is path independent as long as there is no 
unloading in any material point, extJ  from Eq. (7) equals locJ  of Eq. (9). Thus the cohesive 

law, including the shape, can be directly obtained from experiments by measuring the applied 
moment and the end-opening at the end of the fracture process zone. 
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3. Numerical model 
 
The finite element method was used to examine the accuracy of the J integral approach 
developed in the previous Section using the commercial finite element code Abaqus. The 
DCB specimen was modeled as a 2D plane stress problem. Crack initiation and growth was 
modeled using cohesive elements available in Abaqus. In the finite element calculations, the 
crack tip position was defined as the position within the fracture process zone where the 
opening equals 1 , or the traction is equal to the peak traction value  , (see Fig. 1 for 
definition of symbols). 
 

 
*
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   (10) 

 
From the finite element calculations, the end-opening, * , was extracted as a function of the 
applied moment, M . Then, the J integral (Eq. (7)) was computed. With RJ (fracture 

resistance) and *  available, the cohesive law was calculated from Eq. 1. The differentiation 
of *J was done directly on the numerical data and not on fitted data as shown in Eq. (10) 
where i represents increments of applied moment. The differentiation of Eq. (10) introduces 
noise to the predicted cohesive law since Abaqus explicit used. Mass scaling was applied in 
order to obtain a quasi-static solution. 
 
For each case solved, the numerically obtained fracture resistance and cohesive law are then 
compared with the fracture energy and cohesive law originally specified in the finite element 
model. If the proposed approach is accurate, then the difference between the two fracture 
energies and cohesive laws should be small. 
 
4. J-integral approach verification 
 
Fig. 5 shows the fracture resistance, calculated from M (extracted from the finite element 
model), using Eq. 5 for three different cohesive laws ( 2 varies while all other openings and 
the peak tractions are the same). The dotted lines represent the fracture resistance curves 
obtained by integrating the cohesive laws (Fig. 1) specified in the finite element model. It can 
be seen that the steady-state fracture resistance, ssJ , for each cohesive law is slightly higher 

than the corresponding work of separation and that the steady-state is attained at an end-
opening larger than c . A higher ssJ  is expected as there is a small region where the material 

unloads behind the crack tip. The difference in the fracture resistance is less than 10% for the 
three cohesive laws.  
 
Fig. 6 shows the corresponding predicted cohesive laws (solid lines) whereas the dashed lines 
represent the cohesive laws specified in the finite element model. Despite the noise in the 
numerical results (see previous Section), the computed cohesive laws agree well with the 
input cohesive laws. The peak traction value and cohesive law shapes are well captured. The 
differences between the computed and expected cohesive law parameters are less than 11%. 
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In the rest of the Section some selected results are given to show the effect of few non-
dimensional parameters describing the problem of Fig. 2 on the predicted fracture resistance.  
 

 
Figure 5. 

RJ versus *  for various 
2 where 

RJ  is calculated from M using Eq. 5. The dotted lines represent 

the theoretical fracture resistance curves. 1/ Hh , 4
1 102/ h , 2102/ hc , 75.3/ y , 

01.0/ 2# Ey , 2.0/ 2#
2 Ea , 01.0/ 1#2# EE . 

 
 

 
Figure 6. Calculated cohesive laws (solid lines) from 

RJ and * using Eq. 8. The model parameters are given in 

Fig. 5. 
 

Fig. 7 shows the effect of the opening 2 (see Fig. 1) on the steady-state fracture resistance for 
various ratios of peak cohesive traction over the initial yield stress of the non-linear material. 
For the range examined, the steady-state fracture resistance is only slightly larger than cJ . 

Secondly, the error in the stready-state fracture resistance decreases as the opening 2  

increases relatively to c . In all cases, the error in the steady-state fracture resistance 
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increases with increasing  ; a larger ratio y /


 means larger plastic dissipation around the 

cohesive zone. 
 

 
Figure 7. Normalized steady-state fracture resistance as a function of the cohesive peak stress normalized with 
the initial yield stress for three 

c /2
ratios. All other model parameters are given in Fig. 5. 

 
Next in Fig. 8, the effect of the opening c  relative to the height h  is examined. A larger 

value of c  corresponds to a larger active cohesive zone size. As expected, when c  

increases, the extent of the plastic zone increases and as a result the unloading region is larger. 
However, as in Fig. 7, the error in the calculated steady-state fracture resistance is below 11% 
for the range examined. 

 

 
Figure 8. Normalized steady-state fracture resistance as a function of the cohesive peak stress normalized with 
the initial yield stress for three hc /  ratios. 01.0/2 h . All other model parameters are given in Fig. 5. 

 
5. Conclusions 
 
A test procedure to compute the fracture resistance and mode I cohesive law (peak traction, 
critical openings and shape) for materials with a non-linear stress-strain relationship was 
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developed. The method is based on a J integral specimen (Double Cantilever Beam sandwich 
specimen loaded with pure bending moments) subjected to monotonically increasing 
moments. The requirement of no unloading at any material point is not fulfilled exact in a 
small region at the crack tip wake. However, in the range of material and specimen 
parameters examined (large plastic zone but relatively small plastic strains), it was shown that 
the error introduced is below 11%. This is smaller than the scatter usually observed in fracture 
mechanics experiments. Thus, it can be argued that the method can be used in practice to 
determine fracture resistance and cohesive law determinations with satisfactory accuracy for 
materials undergoing large scale plasticity.  
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