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Abstract  

Non-uniform curvatures and through-the-thickness strain have been incorporated in the 

Extended Classical Lamination Theory of Dano and Hyer to model curved shapes of bistable 

laminates. The indication of Tiersten about the use of the sine instead of the tangent function 

in the derivation of the bending curvature has been introduced. Two expansions of 

curvatures, named the Mechanical and the Mathematical curvatures, have been developed. 

Through-the-thickness strain, which is assumed to be uniform in thickness, has been also 

included in the analysis. Out-of-plane displacements of a grid of points marked at the 

deformed surface of a carbon/epoxy laminate of square shape have been experimentally 

obtained using a Coordinate Measuring Machine. Comparison between experimental results 

of displacements and different analytic approaches has been carried out. 

 

 

1. Introduction  

 

Cross-ply laminates have an anisotropic response due to elevated temperatures of 

manufacturing process, and residual thermal stresses lead to a curved shape at Room 

Temperature. [1]. These laminates can have two stable states at RT: cylindrical state I with a 

major curvature in x axis and cylindrical state II with an opposite curvature in the orthogonal 

y axis, as shown in Figure 1. 

 

Figure 1. Two stable shapes of a square [0/90]T laminate 
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In bistable laminates, one stable shape can change to the other by applying a small amount of 

energy. This is a geometrically nonlinear phenomenon, known as snap-through. Hyer and co-

workers incorporated the geometrical nonlinearities of von Kárman within the Classical 

Lamination Theory and proposed an Extended Classical Lamination Theory (ECL) [2]. The 

strain field was approximated by polynomial functions of unknown coefficients using the 

Rayleigh-Ritz method and by applying the Principle of Minimum Total Potential Energy. 

This model assumed the hypothesis of uniform curvatures and null through-the-thickness 

strain. In this work the ECLT is considered as a basic approach. It has been modified by the 

incorporation of non-uniform curvatures and through-the-thickness strain. Two expressions of 

bending curvatures are considered [3]: the mathematical expression of curvature that obtained 

the derivative of the angle from the tangent function, and the mechanical expression of 

curvature where the derivative of the angle is obtained from the sine function. The terms of 

second order of slopes are retained in Taylor’s polynomial expansions in both cases. 

Experimental validation of the mentioned approaches is done. Predictions of displacements 

using different analytic approaches have been compared with experimental results.  

 

2. Basic approach: Extended Classical Lamination Theory (ECLT) 

 

The reference system used is defined in Figure 1, where the origin is located at the geometric 

centre of the laminate and Ω is the mid-plane of the laminate. In this work square plates of 

constant thickness h and side-length L are considered. Hygroscopic effects are not taking into 

account and there is no external forces acting on the laminate. For bi-stablility, the Total 

Potential Energy (TPE) П has two minima, each one associated with a stable geometric 

configuration. In mathematical terms: 

 

 
2

0;    i=1,n   equilibrium  0  stability 
i i je e e

∂Π ∂ Π= >
∂ ∂ ∂

 (1) 

Where ei are unknown coefficients estimated by solving a system of nonlinear equations. The 

function chosen by ECLT to model the out-of-plane displacement is given by: 
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The mid-plane strains 
0 0 0, ,x y xyε ε γ  and curvatures , ,x y xyκ κ κ , are given by: 
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The strain field{ } { } { }0 0zε ε κ= +  of the basic approach using unknown coefficients is given by:  
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3. Mathematical and mechanical curvatures 

 

3.1. Motivation 

 

Timoshenko, obtained a simplified mathematical expression of curvatures κx, and κy for small 

defections assuming that the mid-plane was undeformed. The angle can be replaced by the 

tangent function. But in composite laminates, the mid-plane Ω is deformed. The longitudinal 

strain εx at z distance measured from the mid-plane of a deformed element in the zx plane is: 

 

 
( ) 0x x x x x x

x x

x x x x

z d ds ds ds d z
z

ds ds ds

ρ θ θε ε
ρ

+ − ′ −
= = + = +  (5) 

Where: 
x

ds′  is the length of a deformed line of the mid-plane in the zx plane; ρx is the radius 

of curvature at the mid-plane Ω, being 
x x x

ds dρ θ′ = ; and 
x

ds  is the undeformed length, being 

x
ds dx= . 

The mathematical expression of the bending curvature is based on a function w that depends 

on the independent variable w = w(x). Each x has a w value in its vertical line. In this case, dw 

and dx are related by the tangent function. The curvature obtained by this way will be named 

mathematical curvature. 

In bending of composites beams and plates, the vertical displacement w is related also to the 

undeformed coordinate x. Nevertheless, the displacement is not in the vertical line of the 

corresponding x coordinate due to horizontal displacements 0
u , according to Tiersten [4].  

 

  
Figure 2. Deformed and undeformed configurations of a level curve of the laminate in the zx plane. 

 

Figure 2 shows half of a level curve in the reference plane of a plate with great slopes. 

Unprimed letters represent positions in the undeformed state and primed letters represent 

positions in the deformed state. The initial element PQ of length dx in the undeformed state 
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moves to the element P’Q’ in the deformed state. It is assumed that 
x x

ds ds dx′ = = . Otherwise, 

the length of dx is not the same that the horizontal projection of the P’Q’ segment, dhx. In this 

case, dw and dx are related by the sin function [3]. The curvature obtained by this way will be 

named mechanical curvature. 

 

3.2. Mathematical curvature 

 

According to Figure 2, the angle θx is arctan
x

x

w

h
θ

 ∂=  ∂ 
. Differentiating θx with respect to sx: 
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  (6) 

Since in the mathematical curvature is assumed that dhx = dx the curvature κx is given by: 

 

2

2

(3/2)
2

1

1

x

x

x x

w

d x

ds w

x

θκ
ρ

∂
∂

= = − = −
 ∂ +  ∂   

 (7) 

Making a Taylor’s series expansions in Eq. (7) and retaining the first term, considering the 

out of plane displacement w of the Eq.  the curvatures κx and κy can be expressed as: 
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The strain field is given by:  
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  (9) 

The above unknown parameters (a,b,c and from d1 to d8 ) were determined by Eq. (1).  
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3.3. Mechanical curvature 

 

In the case of mechanical curvature of composites, the value of θx   is obtained from the sine 

function because dsx  is known, arcsin
x

x

w

s
θ

 ∂=  ∂ 
 Differentiating θx with respect to sx it results: 
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Introducing the condition dsx=dx and including the change of sign, the curvature is given by: 
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Making a Taylor series expansion of Eq. (11) and retaining the first term, κx and κy are: 
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Assuming the out of plane displacement w of the Eq. the curvatures κx and κy are given by: 
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The strain field is given by [3]:  
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In [0/90]T laminates the twisting curvature is null, thus the parameter c=0  Figure 3 shows κx 

mathematical and mechanical curvatures plotted versus L/h at the centre (x=y=0) the total 

thickness h varying from 0.25 to 1 mm. They are compared with the uniform curvatures of the 

basic approach. Square [0/90]T laminates with layers of the same thickness are considered. 

The material is carbon/epoxy AS4/8552, its properties have been obtained from [5]. 
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   Figure 3. Deformed and undeformed configurations of a level curve of the laminate in the zx plane. 

 

 

4. Full approach: mechanical curvature and uniform through-the-thickness strain. 

 

Total strains of the full approach proposed, considering a uniform through-the-thickness strain 

εz=are given by [3]: 
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  (15) 

 

There are 12 unknown coefficients to be determined by Eq.(1). A comparison of the κx 

curvature predicted by the basic approach taking into account εz and the full approach is 

shown in Figure 4, for thickness 0.25 and 0.5 mm. Two parts are identified: 

 

• The surrounds of bifurcation point. The effect of considering εz is to increase the length 

associated with the bifurcation point.  

• Stable branch of the curvature, where the curvature at the centre obtained by the full 

approach is lesser than the one obtained by considering only the mechanical curvature. 

Moreover, both of them decrease when the ratio L/h increases.  
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Figure 4. Comparison of curvatures predicted by different models basic, mechanical and Full approach with 

h=0.25 mm; 0.5 mm 

 

5. Experimental validation. 

 

[02/902]T laminates of T6T/F593 carbon/epoxy unidirectional prepreg were manufactured in a 

hot press, according [6] being L/h = 337. A grid 10 x 10 mm
2
 was drawn on the deformed 

surface. Measuring points are equidistant ∆s = 10 mm in the curved drawn lines and columns. 

Each curved segment ∆s has an associated∆hx, that is maximum at the centre of the line (x=0) 

and minimum near the border due to the curved shape. The composite was keep in an oven at 

120ºC during 72 hours order to avoid hygroscopic effects, and it was measured by a 

Coordinate Measuring Machine (CMM) according to [6]. The x coordinate provided the 

projected coordinate hx and the z coordinate provided the out-of-plane displacement w. 
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 Figure 5: Comparison of experimental out-of- plane displacements and those obtained from basic, 

mathematical and full approaches in the line y=100 mm. 

In Figure 5 out-of-plane displacements obtained experimentally are compared with those 

obtained from basic, mathematical and full approaches. It can be stated that the differences 

between the full approach and the mathematical approach are due to the different analytic 

expressions of curvatures. 

 

The results of the basic approach are greater than the experimental ones. The mathematical 

and full approaches fit experimental data, being lesser the values obtained from the 

mathematical approach. It is expected that differences would increase for greater values of 

L/h. 
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6. Conclusions. 

 

The present approach introduces non uniform curvatures and through-the-thickness strain in 

the ECLT of Hyer to model curved shapes of bistable laminates of initial square shape.  

 

Exact bending curvatures are obtained in the mathematical sense and in the mechanical sense. 

The mechanical curvature seems to be more suitable for studying bending problems of beams 

and plates, as it is derived based on the fact that horizontal displacements must be considered 

in addition to vertical displacements. 

 

The influence of considering a uniform value of through-the-thickness strain εz was noticeable 

in the surrounds of bifurcation point: the length-to-thickness ratio associated with bifurcation 

point increases. Furthermore, the value of cylindrical curvatures decrease. 

 

Analytic approaches have been compared with experimental results of displacements obtained 

for a square carbon/epoxy laminate with L/h = 337. The approaches that take into account 

non-uniform curvatures fit better experimental data that the basic approach. The 

displacements obtained from the approach based on mechanical curvatures are greater than 

those obtained from mathematical curvatures. The fitting with experimental data do not allow 

to state that one of them is much better than the other from a experiment-approach 

comparison point of view. Nevertheless, as stated before, the mechanical curvature is 

considered more suitable based on arguments related to the kinematics of deformation.  
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