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Abstract 

In the present work a model is proposed to predict the onset of a fibre-matrix debond crack 

for a fibre embedded in an infinite plate and subjected to combined transverse and anti-plane 

shear stresses. The model is based on the Finite Fracture Mechanics approach, which 

combines a stress and an energy criterion as necessary conditions for failure. A parametric 

analysis is carried out in order to understand the influence of the main geometrical and 

interface parameters on the critical debonding stress under multiaxial static loading. In 

particular, the critical stress is found to increase when the fibre radius is decreased. The 

model is validated against experimental results from the literature on off-axis single-fibre-

composites and a good agreement is found. As a consequence, the model, suitably adapted, 

could represent a useful tool for improving the understanding and the quantitative description 

of the onset of damage in off-axis laminae under static loading. 

 

 

1. Introduction 

 

Fibre-matrix debonding is one of the most important damage mechanisms leading to the static 

and fatigue failure of composite laminae under off-axis loading. Some papers in the literature 

report results on the influence of fibres sizing on the static strength under transverse load [1-

2], also combined with in-plane shear [3]. These results prove that the initiation and 

propagation of debond cracks, affected by the fibres surface treatments, are fundamental 

mechanisms in the static failure process for off-axis laminae. For this reason this phenomenon 

has received quite a large attention in the last decades, mainly focusing on the propagation of 

cracks already existing at the fibre-matrix interface. Toya [4] presented close form 

expressions for the stress and displacement fields for an arc crack at the interface of a fibre 

embedded in an infinite plate under remote transverse tension. Chao and Huang instead 

obtained the stress distributions in the case of anti-plane shear load [5]. Toya's equations were 

adopted in Refs. [6,7] for analysing the longitudinal propagation of a debond crack and by 

Paris and co-authors [8] to treat the problem of circumferential propagation and kinking out of 

the interface.  

Concerning the debonding initiation phenomenon, experimental tests were carried out by 

Ogihara and Koyanagi [9] on cruciform single fibre composites under off-axis load, causing 

the presence of local radial and shear stresses at the interface. The authors presented the 

results in the radial-shear stresses plane providing a fitted quadratic expression for the failure 

locus under a combination of these two stress components. 
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The main limit of a stress-based criterion is that it does not account for the scale effect, since 

stress fields are independent of the fibre's radius. Under this point of view, Cohesive Zone 

Models (CZMs), as those adopted by Chandra [10] and Koyanagi [11] have the advantage that 

they  combine a stress and an energy criterion, thus being sensitive to the fibre dimension. 

Another approach which combines a stress and an energy criterion is the Finite Fracture 

Mechanics (FFM) approach, initially proposed by Leguillon [12] as a general approach to 

predict failure initiation in conditions in which the classical mechanics and the linear elastic 

fracture mechanics fail or cannot be applied. This approach was adopted by Mantič et al. [13] 

to predict the initiation of a debond crack for a fibre embedded in an infinite plate under 

remote transverse stress. In this work the FFM approach is used as the basis to develop a 

debond initiation criterion in the case of a fibre in an infinite plate under combined remote 

transverse and anti-plane shear stresses. This combination of stresses is representative of the 

local multiaxial condition arising in off-axis plies under uniaxial load.  

 

2. Problem definition and approach 

 

Let us consider the case of an isotropic fibre of infinite length and radius Rf embedded in an 

infinite matrix plate, as shown in figure 1a. The remote transverse and anti-plane shear 

stresses (σx and σxz) are named σ2 and σ6, respectively, to emphasise their correspondence 

with the in-plane transverse and shear stresses for composite laminae. The parameter λ12 = 

σ6/σ2 is used to quantify the degree of multiaxiality of the remote stresses. 

 

 
Figure 1: Fibre embedded in an infinite plate with a) pristine and b) partially debonded 

interface 

 

The FFM approach is based on the idea that the onset of an interface crack occurs with a finite 

crack angle 2α0 (figure 2b). This angle is, together with the critical nominal stress for crack 

initiation σ2,c, an unknown of the problem. These two unknowns can be calculated by solving 

simultaneously the following system of equations, representing the stress and energy 

conditions required for the crack initiation to occur.  

 

   2 12σ σ ,α,λ σR           (1.1) 

   2 12Δ σ ,α,λ cG G          (1.2) 

 

Equation (1.1) represents the stress criterion, which states that the stress along the length of 

the nucleated crack has to be at least equal to the static strength σR of the bi-material interface.  

Equation (1.2) represents, instead, the energy criterion, which requires that the energy 

released in the initiation process of a crack of finite angle 2α, divided by the crack area, ΔG, 
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has to be at least equal to the critical value of the Strain Energy Release Rate (SERR), Gc. The 

latter is a material property which could be better interpreted as the specific energy necessary 

for the formation of new crack surfaces.  

The simultaneous solution of equations (1.1) and (1.2) allows one to determine the value of 

the critical remote transverse stress σ2,c, and the finite angle of the nucleated defect α0, as 

functions of the biaxiality ratio λ12. 

In order to solve the governing system, the interface stresses and the relative crack faces 

displacements have to be calculated for the uncracked and cracked conditions, respectively, 

both under pure transverse and anti-plane shear stress. In addition, the material properties Gc 

and σR have to be known. The latter should be ideally measured by means of a tensile test of 

the bi-material system in a condition where the stress criterion holds, i.e. testing specimens 

large enough, as discussed later on in section 7. From this point of view the test method 

proposed in Ref. [14] could be a useful tool for measuring the bi-material interface strength 

under normal and shear stress. The critical SERR Gc can instead be obtained by means of the 

analysis of the mode I propagation of a crack at the considered bi-material interface. 

 

3. Stress fields for the uncracked case 

 

As shown in Refs. [15,16], the stress fields at the fibre-matrix interface (r = Rf) under remote 

transverse stress and anti-plane shear are given in equations (2)-(4). 

 

 
 

 

 2 1 2

1 2 1 2 1 2

2θ1
σ σ μ 1 κ

4μ 2μ κ 1 2 κ μ μ
r

Cos 
    

    

     (2) 

 
 

 
1 2

θ 2

2 1 2

μ 1 κ
τ σ 2θ

2 κ μ μ
r Sin


  


        (3) 

  1 2
6

1 2

μ μ
τ σ θ 1

μ μ
rz Cos

 
    

 
        (4) 

Subscripts 1 and 2 refer to the fibre and the matrix, respectively. θ is the polar angle shown in 

figure 1a), μi is the shear modulus and κi = 3 - 4νi, νi being the Poisson's ratio of the material. 

The angle θ0 is defined as the angular coordinate where the radial stress vanishes (σr(θ0) = 0), 

and it is about 66° for the material system under investigation. It is worth mentioning that the 

analysis is restricted to the stress components which can provoke debonding. 

 

4. Displacements fields for the cracked case 

 

The relative crack face displacements in the case of a remote transverse stress have been 

determined by Toya [4] by means of the complex potential method. The final expressions for 

the relative displacements Δu and Δv in the radial and tangential direction are reported in 

equations (5) and (6). 

 

          


 ,,,,
2

, 2211
2 rhrhRAu f       (5) 

          


 ,,,,
2

, 2112
2 rhrhRAv f       (6) 

 

 The functions hi(α,θ) and ri(α,θ) are given in Ref. [16], while 
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





 , 






2

ln
 ,








1
k   (7) 

 

It is worth mentioning that, for high crack angles, the relative radial displacements predicted 

by equation (5) become negative in proximity of the crack tips, thus predicting an unrealistic 

interpenetration between the two phases. As a consequence, equation (5) can be considered 

reliable until the interpenetration zone is very small. In the present work the maximum 

allowable extension of this region is set equal to 1°. Equations (5,6) can therefore be used for 

crack angles lower than a limit value 2αℓ which is found to be approximately equal to 140 

degrees for a typical glass/epoxy system. An exact description of the displacement field 

should consider the contact between fibre and matrix, but in the present work this aspect is not 

treated, this being not restrictive for the model developed. In fact the limit angle αℓ (70°) is 

greater than θ0 (66°), for which the interface radial stress goes to zero and then becomes 

negative. The influence of a compressive radial contribution on the debond initiation is not 

treated in this work and therefore the actual limit angle for the applicability of the present 

model is equal to θ0 < αℓ. 

The relative displacements fields  in the z-direction, Δw, in the case of anti-plane shear were 

obtained in Ref. [16] from the stress fields presented in [5]. They read as 

 

 
 

   1 2
6

2 2 1

μ 2μ θ
Δ α,θ σ 2 θ α

μ μ μ 2
fw R Cos Cos Cos

  
    

  
    (8) 

 

5. Calculation of the released energy 

 

Once the interface stresses and the relative displacements are known for the pre and post-

debonding conditions respectively, the energy released during the initiation process ΔU can be 

calculated as follows. 

 

α

α

1
Δ σ Δ θ

2
I f rU R u d


           (9) 

α

θα

1
Δ τ Δ θ

2
II f rU R v d


           (10) 

α

α

1
Δ τ Δ θ

2
III f rzU R w d


           (11) 

The subscripts I, II and III highlight that the three contributions are related to mode I, mode II 

and mode III loading, respectively. Thanks to the solutions given in sections 3 and 4, the 

energy contributions can be written as functions of the crack angle: 

 

   2 2

2 1Δ α σ Ω αI f pU R I             (12) 

   2 2

2 2Δ α σ Ω αII f pU R I            (13) 

   2 2

6 3Δ α σ Ω αIII f aU R I            (14) 

 

where Ωp and Ωa are non-dimensional parameters defined as 

 

 1 2

1
Ω μ 1 κ

2
p A   ,  

 

 
1 1 2

2 1 2

μ μ 2μ
Ω 2 2

μ μ μ
a





      (15) 
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and 

 

          
 

   

α

1 1 1 2 2

2 1 2 1 2 1

2θ 1
α α,θ α,θ α,θ α,θ θ

2 κ μ μ 4μ 2μ κ 1o

Cos
I h r h r d

 
          
   (16) 

 
 

          
α

2 2 1 1 2

2 1 2

1
α α,θ α,θ α,θ α,θ 2θ θ

2 κ μ μ o

I h r h r Sin d   


     (17) 

       

 
     

α

3 0
1 2

1 2

1 θ
α θ θ α θ

μ μ 2

2π
1 α α 3

16 μ μ

I Cos Cos Cos Cos d

Cos Cos

 
    

  

  



     (18) 

 

A closed form solution was obtained for I3, whereas  I1 and I2 were computed numerically by 

means of a simple trapezoidal rule with integration steps of 1°. 

 

6. Solution of coupled stress and energy criteria 

 

When transverse and anti-plane stresses are simultaneously applied, three interface stress 

components σr, τrθ and τrz, are responsible for debond initiation. As a consequence an 

equivalent stress, σeq, should be defined to be used in the stress criterion, as in equation (19). 

 

 2 2 2

θσ σ τ τeq r r rzc             (19) 

 

c is a constant equal to the square of the ratio between the normal and shear strength of the bi-

material interface. The analysis of SiC/Ti and glass/epoxy systems [10,11] proved that a value 

of c about unity provides good results if the stress criterion is coupled with an energy criterion 

by means of a CZM. A value close to 1 was experimentally found in [14] for an 

aluminium/epoxy system. However the value of this constant is still an open problem. 

Concerning the energy criterion, in a biaxial loading condition the total SERR can be 

calculated dividing the total released energy by the area of the nucleated crack, 2Ac: 

 

Δ Δ Δ Δ
Δ

2 2α

tot I II III

c f

U U U U
G

A R

 
 


        (20) 

 

Therefore, the energy criterion, equation (1.2), can be explicitly rewritten as follows: 

 

Δ 2αtot f cU R G             (21) 

 

It is clear that the released energy is the sum of the contributions due to mode I, II and III 

loadings. A detailed discussion was reported by the authors in Ref. [16] to support the fact 

that the critical SERR, Gc, has to be considered constant, different from what was proposed by 

Mantič  and co-authors [13]. 

Eventually the governing system of two equations, representing the stress and energy criteria, 

can be explicitly written as follows. 
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       2 2 2 2

2 θ 2 12 2σ σ ,α τ σ ,α τ λ σ ,α σr r rz Rc                                          (22.1)              

        2 2

2 1 2 12 3σ Ω α α λ Ω α 2αf p a cR I I I G                                             (22.2) 

 

In equation (22.1) it is emphasised that the local stresses at the interface are functions of the 

angle α,  the remote stress σ2, which are unknown variables, and the biaxiality ratio λ12.  

As α is involved in complicated expressions within the integrals I1,2,3(α), a closed form 

solution for the system cannot be provided. However the value of σ2,s and σ2,e satisfying the 

stress and energy criteria, respectively, can be calculated as a function of the crack angle α 

from equations (22.1) and (22.2): 

 

 
 

2,
2 2 2 2

θ 12

σ
σ α

(α) (α) λ (α)

R
s

rr r rzk c k k


  
                          (23.1) 

 
      

2, 2

1 2 12 3

2α
σ α

Ω α α λ Ω α

c
e

f p a

G

R I I I
 

      
 

                       (23.2) 

 

The terms kij(α) in equation (23.1) are the interface stress concentration factors at the angle 

θ=α with respect to the x-axis. They can be easily obtained dividing equations (2), (3) and (4) 

by the remote stresses σ2 and σ6. 

 

   
 

 

 1 2

1 2 1 2 1 2

2α1
α μ 1 κ

4μ 2μ κ 1 2 κ μ μ
rr

Cos
k

 
   

    

     (24) 

   
 

 
1 2

θ

2 1 2

μ 1 κ
α 2α

2 κ μ μ
rk Sin


 


        (25) 

    1 2

1 2

μ μ
α α 1

μ μ
rzk Cos

 
  

          

(26) 

 

The initial angle α0 can be computed equating equations (23.1) and (23.2), resulting in 

equation (27) to be solved numerically for α0. 

 

      

 

2

1 0 2 0 12 3 0

0

22 2 2 2

0 θ 0 12 0

1
Ω α α λ Ω α

2α 1

σ(α ) (α ) λ (α )

p a

c

f Rrr r rz

I I I
G

Rk c k k

      


  
     (27) 

 

Once the initial angle has been calculated, the critical remote transverse stress can be easily 

computed by substituting α0 in equation (23.1) or (23.2).  

Thus, the solution depends on the fibre radius Rf, on the interface toughness Gc and strength 

σR, as well as on the biaxiality ratio λ12. A new interface parameter is defined as follows. 

 

2

1
Γ

σ

c

f R

G

R
            (28) 

 

The dimension of Γ is MPa
-1

 when Rf, Gc and σR are expressed in mm, kJ/m
2
 and MPa, 

respectively. 
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7. Parametric analysis, validation and conclusions 

 

According to equation (27) the initial angle α0 depends only and directly on the interface 

parameter Γ. Let us consider first the case c = 0. The trend of the initial angle as a function of 

Γ is shown in figure 2a. It was proved in Ref. [16] that when Γ tends towards zero, α0 

approaches zero as well. This means that, when Γ→0, applying the FFM approach is 

equivalent to apply a point stress criterion at the fibre pole. In fact, figure 2b shows that the 

remote transverse stress predicted by the coupled criteria tends asymptotically to the value 

obtained by the stress criterion only (equation (23.1)). This happens when Rf is very large or 

the Gc to σR
2
 ratio is very small. This confirms why testing large enough specimens allows 

one to determine the bi-material strength σR to be used in the stress criterion, as mentioned in 

section 2. Conversely, if Γ tends towards infinity (Rf is very small or the Gc to σR
2
 ratio is very 

high), α0 approaches the angle θ0 for which the radial stress vanishes. In this conditions the 

angle is not a variable of the problem, and the critical stress tends towards the one which 

satisfies the energy criterion only, which has a linear dependence on Γ
0.5

, as shown in figure 

3b. When c = 0 the influence of λ12 is appreciable only if Γ does not approach zero.  
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Figure 2: a) initial angle and b) critical remote transverse stress against Γ for glass/epoxy 
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Figure 3: a) Critical remote transverse stress against Γ for c = 1 and glass/epoxy system; b) 

comparison between model predictions and experimental data from [9] 

 

Conversely, if c is higher than zero, the biaxiality ratio affects also the solution relevant to the 

stress criterion, as shown in figure 3a for c = 1. In such a case, as discussed in Ref. [16], the 

analysis has to be limited to a maximum value of Γ equal to 

 

 

 
3 0

0

0 0

Ω θ
Γ

2θ θ

a

rz

I

c k




 
            (30) 

a) b) 

a) b) 
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The model is eventually validated against the experimental results presented in [9]. The value 

of σR was calibrated on the experimental results for the pure transverse stress case, while a 

value of Gc equal to 0.75 J/m
2
 was chosen on the basis of comparisons with other results from 

the literature, as better explained in Ref. [16]. Two values of c were considered (0 and 1) and 

both predictions are in good agreement with experimental data, as shown in figure 3b. At 

present it is difficult to say which choice for the parameter c is more appropriate. 
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