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Abstract
Porous ceramics is modeled as random set of overlapping cubic grains. It is a two–component
system with percolated both grains and pores. Dielectric properties were analyzed using the
spectral representation of permittivity. It was shown that the permittivity is well described by
the semi-empirical Lichtenecker formula. The calculations were done using the finite element
method.

1. Introduction

The material properties (dielectric, magnetic, mechanical) of the heterogeneous systems com-
posed of two or more components can be tunned significantly by varying their structure, by
changing volume fractions of the components, and modifying internal geometry. In particu-
lar, dielectric properties of non–homogeneous dielectrics [1] or conductors [2] are crucially
influenced by internal depolarizing fields generated at the interfaces and other inhomogeneities.
There are two basic demands in this context: calculation of the effective properties when the
structure is exactly known, and inversely, estimation of the internal structure when the effective
properties are known from experiment. Theoretical determination of the effective properties
is in general difficult even in the case of the two-component composite and the exact mix-
ing formulae are known for several special micro-geometries only. For particular structures
the approximate mixing formulae are often constructed within the framework of the effective
medium approach and additional heuristic assumptions [3]. Important supplement to the analyt-
ical approaches represent numerical methods, but the numerical results lack of free parameters
desirable for fitting experiment. The effective dielectric properties can be obtained by solving
Maxwells equations using the finite element method (FEM) [4]. Recently the several regular
and random two-dimensional microstructures were numerically studied and compared with the
various mixing formulae such as the Maxwell-Garnett, Bruggeman and Lichtenecker [5]. In
this contribution the 3D model of perovskite ceramics (e. g., PbMg1/3Nb2/3O3 (PMN) [6]) with
main characteristics such as porosity and randomness corresponding to real samples is con-
structed. Using the spectral function analysis it is shown that the dielectric properties of porous
random structures are well described by the Lichtenecker-like mixing formulae. In Section 2,
description of the permittivity using the spectral representation is reviewed, in Section 3, the 3D
model of ceramics is discussed.
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2. Permittivity of 2-component dielectrics

2.1. Permittivity of heterogeneous sample

In the quasistatic regime, i. e. when the wave-length of the applied field is larger than any non-
homogeneity, the electric field E(x) in the sample is described by the static Maxwell equations.
Knowing E(x) the effective permittivity ε of the sample is derived as [3]:

ε

∫
V

E(x)2dV =

∫
V
ε(x)E(x)2dV (1)

where the local permittivty ε(x) takes the values of composite components depending on the po-
sition x. Due to the linearity of the Maxwell equations the effective permittivity is homogeneous
function of the individual permittivities:

ε(ε1, ε2) = ε2ε(r, 1) = ε2F(r) (2)

where F(r) = ε(r, 1), and the ratio r = ε1/ε2 is complex quantity.

2.2. Spectral representation of permittvity

The permittivity of the two–component composite can be expressed in an integral form [3, 5]:

ε = V1ε1 + V2ε2 +

∫ 1

0
v12(n)

ε1ε2

(1 − n)ε2 + nε1
dn (3)

V1 + V2 +

∫ 1

0
v12(n)dn = 1 (4)

V1 +

∫ 1

0
(1 − n)v12(n)dn = 1 − x (5)

V2 +

∫ 1

0
nv12(n)dn = x (6)

where the percolation strengths V1 and V2 are the relative volumes of percolated clusters ’1’
and ’2’ (more precisely, of the regions with zero depolarizing field), the expression v12(n)dn
represents the clusters characterized by the depolarizing factor n. The function v12(n) does
not contain δ-singularities at n and 1 − n, which are in fact fully encountered in coefficients
V1, V2. Expression (3) is a combination of parallel and serial capacities. Using the ratio of
permittivities, the expression (3) is rewritten in the form [5]:

F(r) = V1r + V2 +

∫ 1

0
v12(n)

r
(1 − n) + nr

dn (7)

The percolation strengths V1, V2 and the spectral function v12(n) are the structural parameters,
which do not depend on the component permittivities. They fully determine the dielectric re-
sponse of the sample. The function F(r) are either known explicitly (various mixing formulae)
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or calculated numerically using FEM. The structural parameters are then obtained from F(r)
introducing F̃(n) ≡ F(r = n−1

n ) and using the relation [5]:

lim
δ→0+

1
π

ImF̃(n + iδ) = V1δ(n) + (1 − n)v12(n). (8)

2.3. Method of calculation

In Section 3, the structural parameters V1, V2 and v12(n) are calculated numerically for the model
of ceramics in the following way. First, the spatially varying electric field E(x) is obtained by
solving the static Maxwell equations, and then the structural parameters are calculated using
Eqs. (1), (2) and (8). The spectral function is determined for n running from 0 through 1 with
the step 0.01, the limit in Eq. (8) is approximated by δ = 0.005. The segmented 3D images of
the model were meshed using CGAL library [7] and Maxwell equations were solved using the
finite element method (FreeFem++ [4] ).

3. Model of cubic ceramics

Porous samples of perovskite ceramics are composed of densely packed grains with random
position and orientation, their shape is cubic-like though not always regular, and their size is
distributed around the mean value. It can be considered as the two–component composite of
perovskite and pores (air). For simplicity, the model encountering only the most important
features was constructed. The grains were assumed of cubic shape with rounded edges as
created by the equation (x− x0)6 + (y− y0)6 + (z− z0)6 ≤ r6 , where (x0, y0, z0) is the grain center.
Inside the box of L x L x L voxels, N grains with random positions and orientations were
generated. For simplicity, all grains had the same size r. Let us introduce three characteristic
lengths ∆min, ∆0, and ∆̄. ∆min is the shortest possible distance between grain centers, and it is a
fraction of L defined as ∆min = Lδ, δ < 1. Two grains with common body diagonal, which are
at the distance ∆0 = 2 3

√
3r, are touching only by their corners. The average distance ∆̄ between

nearest neighbors in the uniformly distributed grain centers in the box can be estimated as
∆̄ ≈ L N1/3. Parameters of the model are chosen such that the distance ∆ of two nearest grain
centers cannot become too small, i. e. ∆ > ∆min, but at the same time two grains may overlap.
The grain overlapping is allowed by the condition ∆min < ∆0.

The parameter values further considered are: L = 512, N = 100, δ = 0.2, r = 57, then the size
of the grain is 2r = 114 and the characteristic lengths ∆min = 102, ∆0 = 164, and ∆̄ = 110.
The intersection of two grains cannot exceed approximately 11%. The example of generated
random structure is shown in Fig. 1. Due to the finite box size, fluctuations of various quantities
are expected. Therefore 10 random sets of grains with the above parameters were generated in
order to smooth out the fluctuations. The porosity x and percolation strengths V1, V2 of each
set of grains together with mean values are shown in the Table 1. It is evident that all deviations
from the mean are small. It can be attributed to the severe restrictions imposed on distribution
of grains in the box, as indicated by the small value (∆̄ − ∆min)/∆̄ ≈ 0.07. The spectral function
v12(n) calculated for 10 random sets of grains is plotted in Figure 2 (red points). The percolation
strengths, V1 of the grains and V2 of the pores, are depicted as full lines at n = 0 and n = 1,
respectively. The fluctuations of v12(n) are also small. In principle, fitting v12(n) with an explicit
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No. 1 2 3 4 5 6 7 8 9 10 mean
x 0.247 0.234 0.242 0.241 0.235 0.242 0.238 0.238 0.252 0.252 0.242
V1 0.541 0.554 0.536 0.519 0.558 0.517 0.549 0.544 0.526 0.528 0.537
V2 0.105 0.088 0.104 0.100 0.096 0.098 0.102 0.101 0.104 0.113 0.101

Table 1. Porosity x and percolation strengths in 10 random sets of grains. The mean values are shown in the last
column. There are only small fluctuations about the mean values.

function and then putting it to Eq. (3), the effective permittivity (mixing formula) could be
obtained. Instead, the numerical results are compared with known mixing formulae in this
contribution.

Figure 1. Cut of the 512x512x512 box with 100 grains. Grains are randomly distributed and can intersect. The
volume fraction of air (pores) is about 0.24
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Figure 2. Spectral function of 10 random sets of 100 grains: numerical data (dots). The Lichtenecker model with
a = 1/3 (dashed line) and a = 1/10 (full line). Notation inside the figure: x1 = 1 − x, x2 = x.

The spectral function of the model (red points in Fig. 2) is nonzero in the whole interval (0, 1).
Among various types of mixing formulae similar to the Maxwell-Garnett, Bruggeman and
Lichtenecker models [8, 5], only the last one exhibits the above feature. The Lichtenecker
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formula:
εa = (1 − x)εa

1 + xεa
2, (9)

where −1 ≤ a ≤ 1 is briefly discussed in [8, 9]. The grains in our model are percolated,
therefore only a > 0 is further considered. The spectral function of the expression (9) can be
calculated analytically, but it is not worthwhile to present it here due to its long and complicated
form. The percolation strengths are obtained easily as: V1 = (1 − x)1/a, V2 = x1/a. Varying the
exponent a and comparing with numerical data the best agreement was obtained for a = 1/10,
corresponding percolation strengths are very small, V1 ≈ 0.06, V2 ≈ 0. For comparison, the
spectral function for two values, a = 1/3 and a = 1/10, is plotted in Fig. 2. Discrepancy
between Lichtenecker a = 1/10 and numerical model is observed near n = 0 and n = 1, where
primarily extended clusters contribute. This can be explained by the finite size of the box, where
the maximal size of the clusters is restricted by the box size. In the infinite sample the large
clusters (bigger than the box) contribute to the spectral function at n close to 0, while in the
finite-size box such clusters become percolated and their contribution is shifted to n = 0, i. e. to
the percolation strength.

4. Summary

The perovskite ceramics was modeled as the random set of the cubic grains. Dielectric proper-
ties, in particular structural parameters occurring in the spectral representation, were calculated
using finite element method. The calculated percolation strengths indicate that both grains and
pores are percolated. Comparison of numerically obtained spectral function with various mix-
ing formula lead to the conclusion, that the permittivity of ceramic model is reliably described
by the Lichtenecker formula.
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