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Abstract: 

Integrally-heated tooling is one of the technologies available for ‘out-of-autoclave’ 

processing of advanced thermoset polymer composites.  However, there have been relatively 

few studies of optimization; design and manufacture of tooling often lacks a methodology, and 

may result in poor heat distribution and low thermal efficiency. In the current study, several 

combinations of design parameters (flow channel cross-section, topology and channel 

spacing) have been investigated, using a design of experiments approach, and evaluated 

through CFD numerical simulation to investigate heating time and mould surface 

temperature variation. Signal-to-Noise ratio and ANOVA have been used to identify an 

optimal design configuration.  Results suggest that the layout of the channel and its 

separation play a vital role in the thermal performance of the integrally-heated tool, and that 

the channel profile has a negligible effect. 

1. Introduction 

Cost reduction and improved energy efficiency in composite manufacture require alternatives 

to process CFRP by autoclave using prepregs [1-4], as well as produce large composite 

products as a single piece [5]. Amongst other technologies, there has been a recent focus on 

integrally-heated tools, which have been applied to a variety of processing technologies, 

including compression and resin transfer moulding (RTM) [6, 7]. Heating by circulation of a 

heat transfer fluid offers a number of advantages over ovens or autoclaves [8, 9] and different 

studies been carried out in the development and improvement of this concept [10-12]. 

However, much of the previous research has concentrated on tooling for thermoplastic 

processes [13-18], and there has been relatively little systematic work on thermosetting-

matrix composites. This research focusses on the effect of three design factors in water-

circulated integrally heated tools.  The test cases are designed using Taguchi’s orthogonal 

array (OA) method [19-23].  Numerical simulation of transient heat transfer has been carried 

out for each of the proposed designs of an integrally-heated tool.  The statistical approach of 

signal to noise (S/N) ratio as well as analysis of variance (ANOVA) has been applied to allow 

the interpretation of the numerical results and to identify the optimal parametric combination 

[24-26]. 
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2. Overview of Integrally-Heated Tool: 

2.1 Basic Principle  

In the current study three parameters are described as design factors: channel geometry, 

channel layout and channel separation.  The factors are expected to be significant in obtaining 

optimum design of an integrally-heated tool that can achieve the most uniform temperature in 

the minimum heating time. The desired surface temperature will be the curing temperature of 

a typical low temperature moulding (LTM) prepreg [27, 28]. Each tool model consists of five 

components, including metal and composites as shown in Fig. 1, with the heating channel 

embedded in the mould under the tool face. Table 1 lists the main thermal and mechanical 

properties of the materials used. These properties have been derived from literature sources 

and rules of mixture, and will be subjected to measurement and validation in future studies. 

  

 

 

 

 

 

 

 

 

 

Figure 1.  Schematic architecture of the experimental test tool models [4, 29-37]. 

 

Table 1. Properties of the proposed tool model materials. 

Properties Unites 

Materials 

Water 

@ 90°C 
Copper

 
PVC Foam 

CFRP
  

0ᵒ/90ᵒ 
AlN/epoxy 

T
h

er
m

a
l 

 

   % - - - 50 68.5 

µ        3.1  10
-4

 - - - - 

k       0.677 401 0.04 4.09 
 In-plane 

0.64 
Through-plane 7 

α      1.7  10
-7

 1166 10
-7

 1.6 10
-7

 23.8  10
-7

 3.7  10
-7

 41  10
-7

 

ρ       964.95 8933 160 1600 1956 

cp        4201.5 385 1600 1075.5 875 

M
ec

h
a

n
ic

a
l 

 

         - 455
 

5.1 600 320 

         - 230 2.6 90 61.4 

      - 117 0.17 70 7.89 

      - 44
 

0.066  5 2.93 

  - - 0.3 0.3 0.1 0.24 
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2.2 Limitations of current tool 

Some basic structural constraints were imposed on the proposed tool models.  For example, 

providing sufficient tool strength while reducing thermal resistance led to the conclusion that 

in Fig.2,   16mm and any   0.5mm. This situation could be relevant to RTM, where dry 

reinforcement is clamped within the mould. 

   

 

 

 
 
 
 

 

 

 

 Figure 2. Section of the proposed tool model as used in RTM, with compression of reinforcement. 

The pressure drop of a fluid flowing in a channel is a function of channel length, hydraulic 

diameter and fluid mass flow rate [29]. Channel length and diameter are designed accordingly 

[38] to ensure that the total pressure drop does not exceed the available pump pressure.  

 

3. Design of Experiments 

Nine test cases are considered according to Taguchi’s orthogonal array L9. Table 2 explains 

the arrangement of the variables and their levels, where each test case represents a numerical 

experiment. Design of the tool model in each test case involves changing the levels of the 

selected variables of: channel layout (A), channel profile (B) and channel separation (C), 

while keeping other factors constant (Fig. 3). The first two parameters have three levels, but 

the last has only two levels.    

 

 

Table 2. Design parameters and their levels during the test cases. 

Calculation of the key dimensions of each tool model (Fig. 3) is based on the proposed value 

of channel separation. The channel profiles have equal cross section areas.  
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Figure 3.  Geometries and dimensions of the proposed tool models; zigzag (right), helical (middle) and parallel 

(left). 

 

4. Numerical Simulation 

ANSYS-CFX software is used to model the thermal performance. The proposed flow rate 

must ensure turbulent flow (    10,000), which makes heating faster [10]. The flow rate in 

each branch of the parallel model is defined by the equation of continuity and head loss 

equality [39]. The heating medium will be water at 90ᵒC, while the initial temperature of the 

tool parts and the ambient is assumed to be 25ᵒC. A forced convection boundary was 

specified at the interface between the water and the channel. The running time step size of the 

current study is the smaller of the convection and thermal diffusion timescales. 

 

From the numerical results, two characteristics (heating time per unit mass and surface 

temperature variation) are calculated as the response variables. The coolest heated point on 

the tool face is selected to interpolate and define the required heating time (Ht in Fig. 4), for 

heating up the total tool surface to a target temperature (T in Fig. 4, arbitrarily defined as     

of the water temperature) – this temperature is used to compare the heating performances of 

the test cases. Then a ratio of heating time per unit mass is calculated for each case. 

 

 

Figure 4. Heating curve of points at the surface corners of a tool model with helical layout, square channel and 

36mm separation.  

The second response variable is defined as the difference between the area-weighted average 

temperature of the tool surface and the target temperature. Fig. 5 illustrates temperature 
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distributions over the surfaces of the simulated tool models in three test cases, after reaching 

time Ht.  

 

Figure 5. Surface temperature distribution of some test cases at the corresponding(  ).  

 

5. Design Optimisation 

The quality characteristic investigated in this study was considered as “lower-is-better” (LB). 

The S/N ratios, for an LB characteristic, can be calculated as follows [22]: 

  ⁄           (
 

 
∑   

  
   )                                             (1) 

Where    is value of the response variable or the simulation results, and   is number of 

repetitions. S/N results for heating time and temperature variation are shown in Fig. 6. 

 

 

Figure 6. Main factor effects of average S/N ratio for heating time per unit mass (left) and temperature variance 

(right).  

Results show that the channel profile has little effect on the heated tool performance, while 

the geometrical alignment (parameter A) has high effectiveness on the response variables – 

the parallel arrangement (level 3) is clearly preferred. Analysis of variance (ANOVA) is used 

to analyse the response variables, find the significant design parameters and predict optimal 

design parameters [26, 40]. The expected result of the combination of the optimal design 

parameters is predicted by the following expression: 

                 
 

 
∑   
 
                                      (2) 
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Where    and    are the average performance (factor effect) for the parameters A and C 

respectively,    is the test results (the S/N ratio value of   ). The 90% confidence interval is 

calculated and two different optimal conditions are achieved, for both response variables, 

which indicate that whenever the heating is faster the temperature variation will be higher. 

6. Conclusion 

Results have shown that the circular shape remains the most appropriate and economic 

channel profile since this factor has little effect on thermal efficiency. The channel layout and 

separation are the most crucial factor in achieving the optimal temperature uniformity and 

heating time over the surface of the tool. The parallel arrangement (P) is significantly better. 

Further investigation is required to determine the long-term performance of the integrally 

heated tool, while the numerical simulation results will need practical verification.  
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