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Abstract
This work presents a numerical methodology to compute wear in fiber-reinforced plastics (FRP)
that are subjected to different frictional contact conditions. New anisotropic wear and friction
constitutive laws are also proposed to take into account the influence of the fiber’s orientation,
on the tribological behavior of FRP. The formulation uses the Boundary Element Method (BEM)
and/or the Finite Element Method (MEF) for computing the elastic influence coefficients, and
contact operators over the augmented Lagrangian to enforce contact constraints. The new
anisotropic wear and friction constitutive laws, and the proposed algorithm are applied to study
some FRP materials. In these studies, it can be observed how the fiber orientation, or sliding
orientation affect the normal and tangential contact compliance, as well as the contact traction
distribution and wear evolution.

1. Introduction

Fiber-reinforced composite materials are being used increasingly for numerous applications
in many different structural and mechanical components. Although fiber-reinforced plastics
(FRP) are widely applied, there are not many numerical formulations that allow to analyze
these polymer composites under different contact and wear conditions, especially due to the
fact that particular contact and wear constitutive laws are required. Some experimental works
have studied the significant influence of fiber orientation on the wear and frictional behavior
of FRP composites. It has to be mentioned the works [1, 2, 3, 4, 5, 6], and more recently,
[7]. These experimental works showed that the coefficient of friction depends on several factors
including the combination of materials, the surface roughness or the fiber orientation (i.e. the
largest coefficient of friction was obtained when the sliding was normal to the fiber orientation,
while the lowest one was obtained when the fiber orientation was transverse) (see Fig. 1). Even
considering a sliding direction on a plane parallel to the direction of fibers, [1] observed that the
coefficient of friction sliding in parallel direction was smaller than in the transverse direction. In
summary, there is experimental evidence that it is not only important to consider anisotropy of
the bulk material properties but also the anisotropy of the tribological properties, using proper
contact and wear constitutive laws, and efficient numerical formulations.
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(a) (b) (c)

Figure 1. Schematic diagram of a unidirectional FRP indicating the sliding directions: (a) Longitudinal, (b)
transverse, and (c) Normal (µL ≤ µT ≤ µN).

2. Contact and wear constitutive laws for FRP

The contact problem between two linear anisotropic elastic bodies Ωα, α = 1, 2 with boundary
∂Ωα defined in the Cartesian coordinate system {xi} in R

3 is considered. In order to know the
relative position between both bodies at all times (τ), a gap variable is defined for the pair
I ≡ {P1, P2} of points (Pα ∈ ∂Ωα, α = 1, 2), as g = BT (x2 − x1), where xα is the position of Pα at
every instant (xα = Xα + uα

o + uα), and matrix B = [e1|e2|n] is a base change matrix defined in
[8, 9, 10, 11, 12], which expresses the pair I gap in relation to the local orthonormal base (see
Fig. 2(a)).

(a) (b) (c)

Figure 2. (a) Contact pair I of points Pα ∈ Ωα (α = 1, 2). (b) Elliptic friction law. (c) Orthotropic surface with
parallel fibers.

The expression for the gap can be written as:

g = ggo + BT (u2 − u1) (1)

where ggo = gg + go, gg = BT (X2 − X1) being the geometric gap between two solids in the ref-
erence configuration, and go = BT (u2

o − u1
o) the gap originated due to the rigid body movements.

In this work, the reference configuration for each solid (Xα) that will be considered is the ini-
tial configuration (before applying load). Consequently, gg may also be termed initial geometric
gap. In the expression (1) two components can be identified: the normal gap, gn = ggo,n+u2

n−u1
n,

and the tangential gap or slip, gt = ggo,t + u2
t − u1

t , being uαn and uα
t = [uαt1, u

α
t2] the normal and

tangential components of the displacements.
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2.1. Anisotropic contact law

The unilateral contact law involves two conditions in the Contact Zone (Γc): impenetrability
and no cohesion. Therefore for each pair I ≡ {P1, P2} ∈ Γc: gn ≥ 0 and tn ≤ 0. The variable tn

is the normal contact traction defined as: tn = BT
n t1 = −BT

n t2, where tα is the traction of point
Pα ∈ Γαc expressed in the global system of reference, and Bn = [n] is the third column of matrix
B = [Bt|Bn]. Tangential traction is defined as: tt = BT

t t1 = −BT
t t2. Finally, the variables gn

and tn are complementary: gn tn = 0, so this set of relations may be summarized on Γc by the
so-called Signorini conditions: gn ≥ 0, tn ≤ 0, gn tn = 0.

Friction constitutive laws for FRP can be accurately approximated by a convex elliptical friction
cone, according to experimental works. The principal axes of the ellipse coincide with the
orthotropic axes (Fig. 2(a)). The generic form of such anisotropic limit friction is given by

f (tt, tn) = ||tt||µ − |tn| = 0 (2)

where || • ||µ denotes the elliptic norm ||tt||µ =

√

(

te1/µ1
)2
+

(

te2/µ2
)2, and the coefficients µ1 and

µ2 are the principal friction coefficients in the directions {e1, e2}. Eq. 2 constitutes an ellipse
whose principal axes are: µ1|tn| and µ2|tn| (see Fig. 2(b)). The classical isotropic Coulomb’s
friction criterion is recovered on Eq. 2 considering µ1 = µ2 = µ. The allowable contact tractions
t must satisfy: f (tt, tn) ≤ 0, defining an admissible convex region for t: the Friction Cone (C f ).
An associated sliding rule is considered, so the sliding direction is given by the gradient to the
friction cone and its magnitude by the factor λ: ġe1 = −λ∂ f /∂te1 and ġe2 = −λ∂ f /∂te2 . To
satisfy the complementarity relations: f (tt, tn) ≤ 0, λ ≥ 0, λ f (tt, tn) = 0, the expression for λ
factor is: λ = ||ġt||

∗
µ, where the norm || • ||∗µ is dual of || • ||µ, so: ||ġt||

∗
µ =

√

(µ1ġe1)2 + (µ2ġe2)2.
Thus: te1 = −||tt||µµ

2
1ġe1/||ġt||

∗
µ and te2 = −||tt||µµ

2
2ġe2/||ġt||

∗
µ. To sum up, the unilateral contact

condition and the elliptic friction law defined for any pair I ≡ {P1, P2} ∈ Γc of points in contact
can be compiled as follows, according to their contact status: no contact (tn = 0, gn ≥ 0 and
tt = 0), contact-adhesion (tn ≤ 0, gn = 0 and ġt = 0) and contact-slip (tn ≤ 0, gn = 0 and
tt = −|tn|M

2ġt/||ġt||
∗
µ). The tangential slip velocity (ġt) is expressed at time τk as: ġt ' ∆gt/∆τ,

where ∆gt = gt(τk) − gt(τk−1) and ∆τ = τk − τk−1, according to a standard backward Euler
scheme. M is a diagonal matrix:

M =

[

µ1 0
0 µ2

]

(3)

whose coefficients are

µ1 = µL + (µN − µL) ϕ̂ µ2 = µT + (µN − µT ) ϕ̂ (4)

The expressions above establish a new constitutive friction law which can be applied to model
friction in FRP. Parameter (0 ≤ ϕ̂ ≤ 1) is the nondimensional fiber orientation constant (ϕ̂ =
2ϕ/π ), and (0 ≤ ϕ ≤ π/2) is the fiber orientation relative to direction e1 (see Fig. 2(c)).

The combined normal-tangential contact problem constraints can be formulated as [8, 9, 10]:

t − PC f (t
∗) = 0 (5)

where the contact operator PC f was defined as PC f (t∗) = { PEρ
(t∗t ) PR−

(t∗n) }T . The normal
projection function, PR−

(·), and the tangential projection function, PEρ
were also defined in
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Figure 3. Friction surface ( f (tt, tn)/|tn|) as a function of the fiber orientation ϕ̂.

[8, 9, 10], as well as the augmented traction components (t∗)T = [(t∗t )T t∗n]: t∗t = tt − rtM
2gt

and t∗n = tn + rngn. rn and rt are the normal and tangential dimensional penalization parameters
(rn ∈ R

+, rt ∈ R
+), respectively.

2.2. Anisotropic wear law

The wear constitutive law is based on [8, 9]. In these works, wear evolution can be expressed
in the following wear rate form: ġw = iw |tn|Ḋs, gw being the wear depth, Ḋs the tangential slip
velocity module (Ḋs = ||ġt||), and iw the dimensional wear coefficient or the specific wear rate.
Assuming that the wear intensity iw is a function of the sliding direction parameter αv (iw =

iw(αv)), wear velocity (ġw) depends on the sliding direction. αv is the measure of the oriented
angle between the given direction (e1) and the sliding velocity direction. Let us consider an
orthotropic wear law, iw(αv) =

√

(i1 cosαv)2 + (i2 sinαv)2, where: cosαv = ġe1/||ġt||, sinαv =

ġe2/||ġt||, and i1 and i2 are the principal intensity coefficients:

i1 = iL + (iN − iL) ϕ̂ i2 = iT + (iN − iT ) ϕ̂ (6)

whose expressions (6) establish a new constitutive wear law which can be applied to model
friction in FRP. Finally, postulating the wear rate to be proportional to the friction dissipation
energy makes iL = kµL|tn|, iT = kµT |tn| and iN = kµN |tn|, so they are related to friction coefficients
through the wear factor k. So the wear intensity can be written as iw = ||ġt||i/||ġt||, being ||ġt||i =
√

(i1ġe1)2 + (i2ġe2)2. Finally, the anisotropic wear law can be defined by

ġw = |tn| ||ġt||i (7)

For quasi-static contact problems, wear depth defined on instant τk, is computed as

gw = gw(τk−1) + |tn| ||∆gt||i (8)

gw(τk−1) being the wear depth value on instant τk−1. Due to the fact that the depth of removed
material is computed for an instant τk, the normal contact gap (gn) at the same time must be
rewritten: gn = ggo,n + (u2

n − u1
n) + gw.
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3. Discrete equations for solids

3.1. Contact discrete variables and restrictions

The contact tractions (tc), the gap (g), and the displacements (uα, α = 1, 2), are discretized over
the contact interface (Γc). To that end, Γc is divided into N f elemental surfaces (Γe

c). These
elements (Γe

c) constitute a contact frame. The contact tractions are discretized over the contact
frame as: tc ' t̂c =

∑N f

i = 1 δPiλi, where δPi is the Dirac delta on each contact frame node i, and λi

is the Lagrange multiplier on the node (i = 1...N f ). In the same way, the gap is approximated
as g ' ĝ =

∑N f

i = 1 δPiki. In the expression above, ki is the nodal value. Therefore, taking into
account the gap approximation, the discrete expression of Eq. 1 can be written as:

(k)I = (kgo)I + (d2)I − (d1)I , (9)

for every contact pair I. In the expression above, k is the contact pairs gap vector and kgo the
initial geometrical gap and translation vector. Finally, the contact restrictions (Eq. 5) for every
contact pair I can be expressed as:

(Λt)I − PEρ
( (Λ∗

t )I) = 0 (Λn)I − PR−
( (Λ∗

n)I) = 0, (10)

where augmented contact variables are defined as: (Λ∗
t )I = (Λt)I−rtM

2(kt)I and (Λ∗
n)I = (Λn)I+

rn(kn)I , and the value of ρ for the I pair: ρ = |PR−
( (Λ∗

n)I)|.

3.2. FE-FE, BE-BE or FE-BE coupling equations

The formulation uses the BEM and/or the FEM for computing the elastic influence coefficients
of every solid.The FE-FE, BE-BE or FE-BE contact system can be expressed, according to [8],
as:

[

R1 R2 Rλ Rg

]




















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
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



x1

x2

Λ

k


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

























= F̄ (11)

xα being the solid Ωα (α = 1, 2) unknowns, vector Λ represents the nodal contact tractions,
and the matrices R1, R2, Rλ and Rg, and vector F̄, the corresponding block matrices of these
coupling systems as it was presented in [8].

3.3. Wear equations for contact problems

The wear depth for every instant can be discretized over the contact frame, as a function of the
nodal values as g(k)

w ' ĝ(k)
w = Ñwe, being Ñ the shape functions matrix defined for the frame

element Γe
c, and we the nodal wear depth vector of element Γe

c. Therefore, the discrete form of
kinematic equation for I pair, at instant k, is

(k(k))I = (k(k)
go )I + (d2(k))I − (d1(k))I + (Cgnw(k))I (12)

where w(k) is a vector which contains the contact pairs wear depth, and matrix Cgn is constituted
using the Cg columns which affect the normal gap of contact pairs [8, 9]. The discrete expression
of Eq. 8 can be written for I pair as

(w(k))I = (w(k−1))I + |(Λ(k)
n )I | ||(kk

t )I − (k(k−1)
t )I ||i (13)
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(a) (b)

Figure 4. (a) Sphere indentation over a FRP halfspace. (b) Boundary elements mesh details.

where Λ(k)
n is a vector which contains the normal traction components of contact pairs at instant

k.

4. Solution Scheme

The quasi-static wear contact problem equations set: Eq. 10 to Eq. 13, allow to compute the
variables on instant or load step (k), z(k) = [(x1)T (x2)T

Λ
T kT wT ]T , when the variables on

previous instant are known. In this work z(k) is computed using the iterative Uzawa predictor-
corrector scheme proposed in [8, 9, 10].

5. Numerical studies

This example presents a steel sphere of radius R = 50 mm indented on a carbon FRP half-space
(see Fig. 4(a)). The sphere is subjected to a normal displacement go,x3 = −0.02 mm and a
tangential translational displacement of module: go,t = 0.008 mm, which forms an angle θ with
axis x1. The carbon FRP considered is IM7 Carbon/ 8551 − 7 with a volume fraction of 60 %,
whose mechanical properties are: longitudinal Young modulus, E1= 167.23 GPa, transverse
Young modulus, E2= E3= 9.544 GPa, in-plane shear modulus, G12= 5.292 GPa, transverse
shear modulus ,G23= 3.483 GPa, Poisson ratio ν12= 0.272, and ν13= 0.369. An anisotropic
friction law is considered, being the friction coefficients: µL = 0.4, µT = 0.5 and µN = 0.55. For
simplicity, due to the contact half-width (a) will be much less than the radius (R), the solids are
approximated by elastic half-spaces, each one discretized using linear quadrilateral boundary
elements. Fig. 4(b) shows the meshes details, where the half-space characteristic dimension
is L = 1.2 mm. In this indentation problem, the influence of fiber orientation in the contact
variables is considered. Figures 5(a) and (b), show the normal and tangential contact compliance
variation with the fiber orientation, relative to the load for the fiber alignment ϕ = 0o. For the
normal load (Fig. 5(a)), the largest loads occur in the normal fiber orientation (ϕ = 90o), and
high differences can be observed for ϕ greater than 45o. For the tangential contact compliance
(5(b)), with θ = 0o, the variation relative to the load Q(ϕ = 0) presents a different behavior.
The largest discrepancies occur for a fiber orientation in the interval [0o, 45o]. For ϕ = 90o, the
tangential compliance is not affected by θ, because we recover the isotropic frictional behavior.
Examining the Fig. 5(c), it is found that the variation of the orientation of the fibers has and
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important effect on the magnitude of the normal and tangential contact tractions.

(a) (b) (c)

Figure 5. Normal (a) and tangential (b) contact compliance variation with the fiber orientation. (c) Influence of
fiber orientation on the contact tractions distribution.

Wear coefficients: iL = 5 × 10−10 MPa−1, iT = 6.25 × 10−10 MPa−1 and iN = 6.875 × 10−10

MPa−1, are considered to study a fretting wear problem under gross slip conditions. The wear
volume evolutions after 100.000 cycles are presented in Fig.6(a), go,t = 0.08 mm being the
applied tangential load amplitude. Fig.6(b) shows the influence of ϕ and θ on the resulting wear
volume. Examining the Fig. 6(b), it is found that the variation of the orientation of the fibers
has and important effect on the magnitude of wear, as well as the sliding direction for a fiber
orientation in the interval [0o, 45o].

(a) (b)

Figure 6. (a) Wear volume evolution considering different fiber orientations. (b) Influence of the fiber orientation
and the sliding direction in the resulting wear volume.

6. Summary and conclusions

This work presents new anisotropic wear and friction constitutive laws and its numerical imple-
mentation, to take into account the influence of the fiber orientation and the sliding direction,
on the tribological behavior of FRP. Some examples are presented to show the importance of
considering this new constitutive tribological properties. In other case, we could over- or un-
derestimate wear and contact magnitudes and their distribution over the contact zone.
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