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Abstract
A new three-dimensional failure criteria for fibre-reinforced composite materials based on
structural tensors and invariant theory is proposed. Failure envelopes for several fibre-
reinforced polymers under different stress states are generated and compared with the
test data available in the literature. For more complex three-dimensional stress states,
where the test data available shows large scatter or is not available at all, a computational
micro-mechanics framework is used to validate the failure criteria. In general, the failure
predictions were in good agreement with previous three-dimensional failure criteria and
experimental data. The computational micro-mechanics framework is shown to be a very
useful tool to validate failure criteria under complex three-dimensional stress states.

1. Introduction

The effective use of polymer composite materials reinforced by unidirectional fibres relies
on the ability to obtain reliable predictions of the onset and propagation of the different
failure mechanisms. Accordingly, the development of accurate failure criteria that predict
the onset of ply damage mechanisms in fibre-reinforced polymers (FRPs) is extremely
important. Indeed, this has been the subject of a great number of studies [1, 2, 3, 4, 5].

In the past, we have developed efforts to derive failure criteria for plane stress [4] that
yielded good predictions of failure envelopes under such simple stress state. One major
development was an improved criterion for fibre kinking, which is based on the mechanics
of deformation of a composite ply with an initial fibre misalignment [4]. However, there
are several applications of composite structures where the out-of-plane components of the
stress tensor cannot be neglected (e.g. bolted joints under in-plane, out-of-plane loading
and combinations of thereof). Therefore, the objective of this paper is to present a recently
proposed failure criteria [6] that accounts for fully general stress states.
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1.1. Summary of the failure criteria

The full details of the derivation of the failure criteria are presented in [6]. In the following,
a summary of the equations that represent the failure criteria are presented.
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Fibre failure

• Fibre tension (σ11 ≥ 0)

1. Failure criteria
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• Fibre compression (σ11 < 0)
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1. Model parameters
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2. Angle of the kinking plane (ψ)
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4. Initial misalignment angle (φ0)
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Linear shear and Nonlinear
small angles shear
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8. Structural tensor (A)
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2. Validation examples

2.1. Effect of hydrostatic pressure on E-Glass/MY750/HY917/DY063

Hine et al. [7] investigated the effect of hydrostatic pressure on the mechanical properties
of E-Glass/MY750/HY917/DY063 fibreglass-epoxy. Figure 1 shows the experimental
results obtained by [7] for the effect of hydrostatic pressure on the in-plane shear response,
and a comparison with the predictions of the proposed failure criteria.
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Figure 1: Shear response of E-Glass/MY750/HY917/DY063 fibreglass-epoxy subjected
to hydrostatic pressure.

2.2. Validation based on computational micro-mechanics

The range of stress states that can be imposed by means of experimental tests is limited by
the complexity of the load introduction systems. Therefore, a recently proposed approach
based on computational micro-mechanics [8] is used here for generation of failure envelopes
corresponding to stress states that cannot be experimentally imposed to the material.

Figure 2 shows the comparison between the failure envelopes predicted by computational
micro-mechanics and the failure criteria proposed in this paper. In general, a good agree-
ment between the two modelling strategies is observed.
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]
(a) Transverse biaxial tension.

(b) Transverse tension-compression.

(c) Transverse biaxial compression.

Figure 2: σ22 – σ33 failure envelope — micro-mechanics versus analytical failure criteria.

3. Conclusions

The new failure criteria proposed is able to predict failure of composite laminates un-
der complex stress states with good accuracy. A good agreement was observed when
the predictions of the failure criteria are compared with experimental data and with re-
sults of computational micro-mechanical models. The computational micro-mechanics
framework is shown to be a very useful tool to validate failure criteria under complex
three-dimensional stress states.
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