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Abstract
A robust numerical method for simulating Liquid Resin Infusion processes is presented. The
computational domain can be divided into a purely fluid domain and a porous medium. A
level set method is used to capture the interface between the purely fluid and porous domains
as well as the moving flow front. In the purely fluid domain, the fluid flows according to the
Stokes’ equations, while the fluid flows into the preforms according to the Darcy’s equations.
Specific conditions have to be considered on the Stokes/Darcy interface. Under the effect of
a mechanical pressure applied on the high deformable preform/resin stacking, the resin flows
and infuses through the preform which permeability is anisotropic and very low, down to 10−15

m2. A mixed velocity-pressure variational formulation is established for the fully Stokes-Darcy
coupled problem and discretized using finite element method stabilized with a sub-grid scale
stabilization technique (ASGS). Finally, This monolithic approach is shown to be robust and
allows us to consider complex shapes for manufacturing process by resin infusion.

1. Introduction

Liquid Resin Infusion processes, used for manufacturing composite materials parts with high
quality, allow to investigate new designs for large dimension pieces especially in aeronautic
field. These processes consist in infusing a liquid resin into a stacking of fibrous preforms under
the action of a mechanical pressure field applied onto this stacking where a stiff-distribution
medium is also placed to create a resin feeding (Figure 1(a)). However, despite numerous
advantages, the control of these processes is difficult, especially for the most critical properties
related to the final piece like its dimensions and its fibre volume fraction. The aim of this work
is to propose a robust numerical finite element solution to simulate these processes in order
to provide process parameters (filling time, final dimensions, volume fraction...). To control
these processes, we develop a model based on the coupling between the resin flow within the
porous domain (Darcy), and the purely fluid domain (Stokes) (Figure 1(b)). A specificity of
this modelling is the order of magnitude of the permeability which is very low (10−15 m2). The
zero isovalue of two level set functions are used to describe the Stokes-Darcy interface and the
moving flow front (Cf. section 4.2). The coupled problem is classically solved by formulating
first a mixed velocity - pressure problem. The difficulty of the choice of a stable finite element
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(a) (b)

Figure 1. Domain decomposition into three zones for the modelling of resion infusion process: fluid distribution
medium with resin, dry and wet preforms (a), 2D representation of the Stokes-Darcy domain (b).

pair for Stokes-Darcy coupled problem results from the fact that the stable elements for stokes
are not stable for Darcy and vice versa. Two different strategies for coupling Stokes and Darcy
equations can be found in the literature, called decoupled and monolithic strategies. Decoupled
strategies consist in using two different meshes and consequently two different FE spaces for
Stokes and Darcy [1, 2]. On the contrary, monolithic approaches, as the one presented here,
is based on the use of one single finite element mesh and then one single finite element space
[3]. In this work, we use a robust approach which yields improvements compared to the the
approach proposed by G. Pacquaut et al. [3]. The robustness of the approach is ensured by
using ASGS method (Algebraic Subgrid Scale) to stabilize velocity and pressure approximated
by piecewise linear continuous functions in Stokes and Darcy domains.

The paper is organized as follows. The first section presents the mathematical modelling for the
Stokes-Darcy coupled problem. The next section introduces both the velocity-pressure mixed
formulation for the Stokes-Darcy problem and the variational multiscale method used for the
stabilization. Finally, the last section shows numerical tests and results in severe regimes (very
low permeabilities, complex geometries) to illustrate the capability of modelling manufacturing
processes by resin infusion.

2. Governing equations

2.1. Mathematical model

Let us define Ω ⊂ Rm (m = 2 or m = 3) as a bounded domain made up by two non overlapping
sub-domains Ωs and Ωd separated by a surface Γ = ∂Ωs ∩ ∂Ωd (Figure 1(b)). Index s is used
to denote everything that concerns the purely fluid domain (governed by the Stokes’ equations)
and index d for the porous medium (governed by the Darcy’s equations). Γ is the interface
between the Stokes and Darcy domains. In this work, the inertia terms are neglected and the
resin is considered as an incompressible fluid. The Stokes’ equations, which express momentum
and mass balances, are written as, find the velocity vs and the pressure ps such that

−∇ · (2ηε̇(vs)) + ∇ps = 0 in Ωs

∇ · vs = 0 in Ωs

vs = v1 on Γs,D

σn,s = −pext,sns on Γs,N

(1)

with ps the pressure, vs the velocity, η the viscosity assumed to be constant (Newtonian fluid),
ε̇(vs) = 1

2 (∇vs + ∇vs
T ) the strain rate tensor. v1 is the velocity prescribed on the boundary Γs,D,
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ns is the unit vector normal to the boundary of Ωs, σn,s is the normal stress prescribed on Γs,N

to be equal to −pext,sns. The Darcy’s equations are then expressed as, find the velocity vd and
the pressure pd such that

ηK−1vd + ∇pd = 0 in Ωd

∇ · vd = 0 in Ωd

vd · nd = gd on Γd,D

pd = pext,d on Γd,N

(2)

with with pd the pressure, vd the velocity, K the permeability tensor, pext,d a pressure to be
prescribed on Γd,N , nd the outward unit vector normal to the boundary of Ωd.

2.2. Interface conditions

Conditions (mass conservation and continuity of the normal stress) have to be considered at the
interface Γ of normal n = ns = −nd (Figure 1(b)). The mass conservation through the interface
Γ is expressed by the continuity of the normal velocity field v across Γ: vs ·ns + vd ·nd = 0 on Γ.
The continuity of normal stress over the interface Γ is expressed by: n · σs · n = n · σd · n on
Γ. The Beaver Joseph Saffman condition allows the tangential velocity to be specified on the
interface Γ [4] and writes : 2n · ε̇(vs) · τi = − α

√
tr(K)/m

(vs · τi), i = 1, .., (m − 1), where α is a
dimensionless parameter, so-called slip coefficient, τi are the tangential vectors on the interface.

3. Weak formulation

The weak formulation of the Stokes-Darcy coupled problem is obtained by summing up the
Stokes and Darcy’s weak formulations and by taking into consideration interface conditions
described in the section 2.2. All details concerning both the weak formulation of Stokes’ and
Darcy’s systems separately are given in [5, 6, 7]. For a sake of simplicity, we choose to write
the L2 inner product in Ωd/s ⊂ Rm as < ·, · >. The following functional spaces are first defined
for any bounded region A ⊂ Rm (A may be Ωs or Ωd):

Q(A) = L2(A) =

{
q : A→ R ;

∫
A

q2dA < ∞

}
V(A) = H1(A) =

{
q ∈ L2(A) ; ∇q ∈

(
L2(A)

)m}
VΓ(A) = H1

ΓD
(A) =

{
q ∈ H1(Ωs) ; q = 0 on ΓD

}
W(A) = H(div, A) =

{
u ∈

(
L2(A)

)m
; div(u) ∈ L2(A)

}
WΓ(A) = HΓD(div, A) = {u ∈ H(div, A) ; u · n = 0 on ΓD}

The mixed variational formulation of the Stokes-Darcy coupled problem is established by con-
sidering a velocity v on Ω and a pressure field p on Ω such as v|Ωi = vi and p|Ωi = pi with i = s
or i = d. The integrals over Ωs and Ωd must be re-defined on Ω. This is achieved by introducing
the Heaviside function Hi equal to 1 in the domain i and vanishing elsewhere. These functions
allow us to write

∫
Ωi

(...)dΩ =
∫

Ω
(...)HidΩ with = s or i = d. Hence, the mixed variational

formulation of the Stokes-Darcy coupled problem consists in finding (v, p) ∈ (Vc × Qc) such
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that Bc[(v, p), (w, q)] = Lc[(w, q)] with the bilinear form Bc and the linear form Lc defined by

Bc([v, q], [w, q]) = < 2ηε̇(v) : ε̇(w)Hs >Ω + < ηK−1v,w Hd >Ω − < p ,∇ · w >Ω

+ < q, ∇ · v >Ω + <
αη

√
tr(K)/m

v · τ ,w · τ >Γ (3)

Lc([v, p], [w, q]) = < pext,sn,w >Γs,N + < pext,dn,w >Γd,N

for any trial functions w ∈ V0
c and q ∈ Qc with Vc = V(Ωs)m ×W(Ωd), Qc = Q(Ωs)×Q(Ωd) and

V0
c = VΓ(Ωs)m ×WΓ(Ωd).

4. Numerical strategy

4.1. Stabilized finite element method

We consider the bounded domain Ω ⊂ Rm discretized into nel non-overlapping elements. This
one single unstructured mesh is made up of triangles if m = 2 and of tetrahedrons if m = 3.
The Galerkin approximation of both the Stokes and the Darcy problems requires the use of
velocity-pressure interpolation that satisfy the adequate inf-sup condition. Different interpola-
tion pairs are known to satisfy this condition for each problem independently, but the key issue
is to find interpolations that satisfy both at the same time. In this paper, we choose the use of
stabilized finite element methods. The philosophy of the stabilized methods is to strengthen
classical variational formulations so that discrete approximation which would otherwise be un-
stable becomes stable and convergent. One of the Variational MultiScale (VMS) method for
Stokes-Darcy problem is ASGS (Algebraic Subgrid Scale) method [8]. An important feature
is that the finite element spaces in Stokes’ and Darcy’s domains are the same because we use
a monolithic approach. The finite element discretization is carried out by restricting the varia-
tional formulation (3) to the finite the finite element space (Vm

h ×Qh), where Vh ⊂ V and Qh ⊂ Q
are the approximation spaces for velocity and pressure, respectively. In this paper, both velocity
and pressure are approximated by continuous and piecewise linear functions. The basic idea
of the VMS methods is to approximate the effect of the component of the continuous solution
which cannot be captured by the finite element solution. It consists in splitting the continuous
solution for velocity and pressure into two components, one coarse corresponding to the finite
element scale (vh, ph), and a finer component corresponding to lower scale (v′, p′) for resolu-
tions. The velocity is approximated as v = vh + v′ and the pressure field is approximated as
p = ph + p′. We consider a subgrid space V × Q = (Vh × Qh) ⊕ (V ′ × Q′). Invoking this
decomposition in the continuous problem (3) for both solution and test functions, one gets the
two-scale systems

Bc[(vh, ph), (wh, qh)] + Bc[(w′, p′), (wh, qh)] = Lc[(wh, qh)] (4)
Bc[(vh, ph), (w′, p′)] + Bc[(v′, p′), (w′, q′)] = Lc[(w′, q′)] (5)

for all (wh, qh) ∈ Vh × Qh and (w′, q′) ∈ V ′ × Q′. After approximating (5) with an algebraic
formulation, by introducing an operator of projection onto V ′ × Q′, the approximated fields
(v′, p′) are taken into account in the finite element problem (4) [5]. For Stokes and Darcy flows
coupled through their interfaces, the stabilized problem with ASGS can be written as follows
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Bc,stable[(vh, ph)(wh, qh)] = Lc,stable with

Bc,stable([vh, ph], [wh, qh]) = 2η < Hsε̇(vh) : ε̇(wh) >Ω +η < Hd wh,K−1vh >Ω

− < ∇ · wh, ph > + < ∇ · vh, qh >Ω +τp,c < ∇ · vh,∇ · wh >Ω

+ < α
η

√
tr(K)/m

(vh · τ), (wh · τ) >Γ

+τu,c < ηK−1vh + ∇ph,−ηK−1wh − ∇qh >Ω (6)
Lc,stable([wh, qh]) = < pext,sn,wh >Γs,N + < pext,dn,wh >Γs,D

τp,c, τu,c are the stabilization parameters, that we compute as

τp,c = cp
η

K
l2
p Hd + c1ηHs τu,c =

(
1

c1 η
HsI +

1
cu η l2

u
HdK

)
h2

k (7)

with cp and cu some algorithmic constants. lu and lp are length scales which we choose equal to
(L0hk)1/2, L0 is a characteristic length of the domain and hk is the element size. K is a ”represen-
tative” permeability defined here, such as K = [max(KI ,KII , KIII) + min(KI ,KII ,KIII)]/2, where
the permeability tensor K in the structural frame R = (0; XI , XII , XIII) is given by (orthotropic
case)

K =

 KI 0 0
0 KII 0
0 0 KIII


(0;XI ,XII ,XIII )

(8)

4.2. Interface capturing

In our monolithic approach, both interfaces Γ separating the Stokes’ and Darcy’s domains and
Γ f the moving flow front, are not described by a set of boundary elements. These interfaces
go through the mesh elements. Consequently, two functions φ and φ f has to be introduced to
depict these interfaces. φ, φ f are chosen as signed distance functions, respectively to Γ and
Γ f . Γ and Γ f are then respectively described by the zero iso-surface of φ : Γ = {φ = 0} and
φ f : Γ f = {φ f = 0}. When considering the discrete problem, φ and φ f are approximated by
continuous and piecewise linear functions φh and φ f h on Ωh. The drawback of the monolithic
approach is that the surface integrals are not easily and directly computable. There is two ways
to compute the surface integral < α η

√
tr(K)/m

(vh · τ), (wh · τ) >Γ involved in (6). Either the surface
integral is turned into a volume integral by introducing a Dirac delta function, or it is computed
exactly by rebuilding a piecewise linear interface. The exact computation of the surface integrals
shows more accurate results than Dirac approximation [5].

The specificity of our approach is the introduction of a moving flow front, depicted above by
the level-set function φ f , separating the part of the domain which already filled with the resin
from the part which is not filled yet. Because of our monolithic approach, the velocity and
pressure fields have to be defined on the whole computational domain assuming that the empty
part is filled with a Newtonian incompressible fluid (referred to the ”air”) having a very low
viscosity ηa � η f , where η f is the fluid viscosity. Taking into account this moving flow front
into (6) consists of simply replacing the constant resin viscosity η by the viscosity ηφ, equal to
η f in the filled domain (when φ f > 0) and equal to ηa in the empty domain (when φ f < 0):
ηφ = H(φ)η f + (1 − H(φ))ηa. Once the velocity is computed, φ f is transported by solving the
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following transport equation
∂φ f

∂t
+ v · ∇φ f = 0 ∀(x, t) ∈ Ω × (0,T )

φ f (x, t = 0) = φ0(x) ∀x ∈ Ω (9)
φ f (x, t) = g(x, t) ∀x ∈ ∂Ω−,∀t ∈ (0,T )

where ∂Ω− = {x ∈ ∂Ω; v · n < 0} is the inflow part of the boundary ∂Ω. In order to avoid
spurious oscillations when applying the continuous piecewise linear function φ fh approximation,
the advection equation (9) is solved by using a classical SUPG method and by using an implicit
Euler scheme for the time discretization. Hence, a reinitialization step may be necessary to
ensure that the solution is not deteriorated and to recover the property of the signed distance
function (i.e., ||∇φ f || = 1) without disturbing the position of the flow front.

5. Numerical results

The first simulation consists in a bi-dimensional flow with an orthotropic permeability of the
porous medium. The aim of the numerical test is to validate the Stokes-Darcy coupling pre-
sented in this paper for a transient flow with a very low permability. The simulation has been
carried out by using the finite element software Z-set. The computational domain is divided into
a purely fluid domain elliptical in shape (Stokes’ domain at the center) and a porous medium
(Figure 2). The Stokes-Darcy interface and the resin flow front are depicted by respectively
the zero iso-surface coloured in white and the zero iso-surface coloured in black (Figure 2(a)).
The physical parameters for this simulation are ηa = 1.10−5Pa.s and η f = 3.10−2Pa.s. The
permeability tensor K is defined in the structural frame R = (0; XI , XII) by the permeability
KI = 5.10−15m2 and KII = 1.10−15m2. A pressure equals to 105Pa is applied on the center of the
computational domain and a pressure is enforced equal to zero on the boundary of the computa-
tional domain. This case has been investigated in [9]. An analytical solution allows to describe
the position of the flow front during the simulation. Figure 2(a) shows the pressure iso-values
provided by the simulation. A pressure gradient appears in the wet preform zone. Figure 2(b)
compares simulation results to the analytical solution in the two main directions XI and XII .
One can verify the good correlation between the analytical and the numerical solutions.

(a) (b)

Figure 2. Pressure field in a bi-dimensional Stokes-Darcy flow with an orthotropic permeability (a), evolution of
the flow front (b).

The example proposed Figure 3 represents the manufacturing of a ”Omega” shaped piece by
resin infusion based process. The computational domain is depicted Figure 3(a) with an injec-
tion channel through which the resin is injected. The boundary conditions prescribed for this
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simulation are a normal stress on the inflow part of the domain and a zero normal velocity on
the other edges of the domain. The permeability tensor K is defined in the structural frame
R = (0; XI , XII) of each porous domain of the part, by the permeability KI = 1.10−13m2 and
KII = 1.10−15m2. The computational domain is discretized with a fixed mesh of 27,248 trian-
gular elements corresponding to 14,523 nodes. Figure 3 shows the evolution of the flow front
highlighting the strong effect of the orthotropic permeability (Figures 3(b), 3(c), 3(d)) on the
filling of the porous medium. The orthotropic permeability also affects the pressure field in the
porous domain and then the flow in the curved part. Moreover, the results seem to show that
when the front reaches the top of an horizontal part of the domain, air is entrapped, this could
results defects. These defects may be reduced by placing properly the vents in an optimization
process. The robustness of our approach to simulate realistic geometries with thin flow media
in the context of the manufacturing processes of composite materials has been demonstrated.
These simulations were conducted with a Stokes-Darcy monolithic approach with a moving
flow front and very low orthotropic permeabilities (10−13 ∼ 10−15m2). All the developments
have been extended to 3D cases and numerical simulations of the manufacturing process by
resin infusion have been performed but not included in this paper.

(a) (b) t = t1

(c) t = t2 (d) t = t3

Figure 3. Geometry and boundary conditions used for the simulation of the manufacturing process by resin infu-
sion (a), Evolution of the resin flow front and pressure fields for three different times for orthotropic permeability
KI = 1.10−13m2 and KII = 1.10−15m2 (b), (c) and (d).

6. Conclusion

A unified strategy has been developed to solve the Stokes-Darcy coupled problem. A stabilized
finite element method has been proposed to stabilize Stokes-Darcy coupled problem in the case
where the Brezzi-Babuska stability condition is not fulfilled. This stabilization method is based
on a variational multiscale technique called ASGS method. Convergence of this method was
validated in [5] showing the accuracy of the results. A numerical simulation of a bi-directional
flow was presented for the validation of the Stokes-Darcy coupling with orthotropic permeabil-
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ities. Finally, a 2D simulation of the manufacturing process by resin infusion was presented.
In these simulations, two signed distance functions were used, one to represent the interface
between the purely fluid domain and the porous medium and a second one to capture the flow
front. It was shown that our monolithic approach is relevant to simulate the resin infusion pro-
cesses in severe regimes (very low orthotropic permeabilities, thin flow media...). Regarding
the prospects for future works, we shall take into account the deformation of preforms by using
an Updated Lagrangian scheme relying on displacement-based finite element. A special care
will be paid to the interaction of the preform deformation and the resin infusion. Indeed, the
resin pressure will be modified by the permeability change induced by preform compaction, and
conversely the mechanical response of the porous medium will be represented via a Terzaghi’s
model modified according to the current resin pressure.
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