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Abstract  
Crack-bridging can be encountered in unidirectional fibre-reinforced composites where a 
matrix crack is constrained by the continuity of fibres across the faces of the crack. The 
elasticity of the exposed fibres bridging the crack can impose a displacement-dependent 
traction boundary condition across the faces of the crack. This paper discusses the 
mathematical modelling of a penny-shaped crack where fibre-elasticity and fibre debonding 
exert a displacement-dependent normal traction boundary condition across the faces of the 
crack. The Fredholm integral equation resulting from the formulation of the mixed boundary 
value problem is solved numerically to evaluate the Mode I stress intensity factor at the 
boundary of the penny-shaped crack. The influence of fibre elasticity and debonding on KI  
are examined.   

 
 

1. Introduction  
 

Unidirectional reinforcement in composites is regarded as a very specific reinforcement 
configuration adopted to satisfy a functional requirement. It is an idealization since 
unidirectional reinforcement on its own is rarely used as an engineering solution to enhance 
the load carrying capacity. Applications generally involve multi-directional reinforcement to 
address aspects of directional variability of the loading of fibre-reinforced materials. Despite 
this limitation, the study of unidirectionally reinforced materials provides important insight 
into micro-mechanical features that can influence the load transfer mechanisms at the scale of 
fibres. Ideally, in its fabricated condition, fibre-reinforced materials are expected to be defect-
free. This is largely a matter of definition, since even perfect fibre-reinforcement can result in 
micromechanical defects introduced during curing processes and under certain conditions of 
use, involving localized loads, extreme temperatures and impact loading. The integrity of 
fibre-reinforced materials can therefore be compromised by the development of features such 
as fibre breakage, fibre pullout, matrix fracture, fibre-matrix interface delamination, matrix 
void growth, etc. The importance of damage to the structural integrity of fibre-reinforced 
materials was discussed several decades ago by a number of researchers and accounts of 
developments in the area of micromechanical damage are given by Backlund [1] and 
Selvadurai [2-4]. The topic of flaw- or crack-bridging in unidirectional fibre-reinforced 
composites was discussed by Kelly [5], Aveston and Kelly [6, 7], Bowling and Groves [8], 
Sih [9] and Beaumont [10]. The initial investigations dealing with the modelling of flaw-
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bridging in composites were presented by Selvadurai [2, 3], followed by the work of Stang 
[11] and several others including Rose, McCartney, Budiansky, Amazigo, Movchan and 
Willis and others have investigated various aspects of the elastostatic problem of bridging-
induced behaviour of flaws in unidirectional fibre-reinforced materials. References to these 
works can be found in Selvadurai [12] 
 
This paper examines the flaw-bridging problem in a unidirectionally reinforced elastic 
composite, where the bridging occurs as a result of the development of a crack in the matrix 
and the intact fibres that are intact and continuous across the faces of the crack, which exert a 
displacement-dependent traction constraint on the crack surfaces. The types of cracks that can 
develop in a unidirectionally reinforced can be varied and these can include cracks that are 
present at the boundary of a unidirectionally reinforced composites to through cracks that can 
occur across unidirectionally reinforced plates to bridged cracks that can be present at the 
interior of uni-directionally reinforced composites. The orientation of such cracks can also be 
varied and cannot be determined with certainty. The effectiveness of the bridging action is 
expected to be reduced if the fibre-bridging occurs at an inclination to the plane of such 
matrix cracks. It is convenient to examine the role of flaw bridging by considering the 
problem of the penny-shaped matrix crack that is located normal to the direction of uni-
directional reinforcement. The presence of fibre continuity changes the character of the 
integral equation governing the stress analysis problem from an Abel to a Fredholm type. This 
integral equation can be solved numerically to determine the influence of the flaw-bridging on 
the Mode I stress intensity factor. The paper reviews the formulation of the flaw-bridging 
problem related to a e penny-shaped crack and an external circular crack and examines the 
limiting cases of fibre-bridging on the Mode I stress intensity factor. 

 
2. Basic results for transverse isotropic elastic materials 

 
We consider the class of axisymmetric problems related to an elastic composite, which is 
reinforced uni-directionally by elastic fibres. We assume that the effective transversely 
isotropic elastic properties of the fibre-reinforced material can estimated by recourse to 
theories of elastic composites similar to those as proposed by Hashin and Rosen [13], Hill 
[14], Broutman and Krock [15], Hale [16], Christensen [17] and Spencer [18] (see also 
Selvadurai and Nikopour [19-21]). We consider the mechanics of the transversely isotropic 
elastic materials where the axis of elastic symmetry coincides with the fibre direction. As 
shown by Elliott [22] and Shield [23], the displacement and stress fields in the resulting 
transverse isotropic elastic material can be expressed in terms of two functions ( , )i r zϕ , 

( 1, 2)i = , which are solutions of  
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where /i iz z ν= , and iν  are roots of the equation 
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and ijc are the elastic constants of the transversely isotropic elastic material. In general 
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( , , , , , , )ij ij f m f m f mc c E E V V Cν ν=                                          (3) 

 
where the material parameters of the composite depend on the constituent properties , the 
volume fractions and a contiguity factor, C . Explicit expressions for ijc  are given, for 

example, in [13], [17] and [19]. The displacement and stress fields relevant to the problems 
considered here are                   
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where 

                  

11 44 13 44( ) /( )i ik c c c cν= − +        (5) 

 
3. The Penny-Shaped Bridged Crack 
 
We examine the problem of a penny-shaped matrix crack that is located in a uni-directional 
fibre-reinforced material, where the fibres exhibit continuity across the faces of the crack. The 
plane of the penny-shaped matrix crack is located normal to the direction of uniaxial 
reinforcement, and it is assumed that the bulk elastic behaviour of the composite can be 
modelled as a transversely isotropic elastic material. The penny-shaped matrix crack of radius 
b  interacts with the external loading by imposing additional displacement-dependent 
tractions on the face of the matrix crack. The tractions that develop can be influenced by a 
variety of factors including fibre debonding at the crack face, fibre yielding, frictional slip, 
etc. The analysis of penny-shaped cracks with displacement-dependent traction boundary 
conditions on the crack faces was first examined by Atkinson [24] using an iterative 
technique. Even though fibre continuity is present, the reduction of the bridging fibre length 
to zero effectively introduces infinite bridging stiffness to the crack tip, which suppresses the 
development of the singular stress field. The approach adopted by Selvadurai [2-4] assumes 
that debonding occurs uniformly over the faces of the crack such that the exposed length of 
the fibres is 2l  (see inset sketch in Figure 1).  This enables the mathematical formulation of 
the bridged penny-shaped crack problem with a displacement-dependent traction constraint. 
We consider the problem where the composite containing the bridged crack is subjected to an 
external stress state which is symmetric about the z -axis, and aligned with the fibre direction. 
The axisymmetric bridged crack problem can be formulated in relation to a halfspace region, 
where the surface of the halfspace region is subjected to mixed boundary conditions 
     
     ( ,0) 0 , ; ( ,0) 0 ; 0z rzu r b r r rσ= ≤ < ∞ = ≤ ≤ ∞      (6) 

                      *( ,0) ( ) ( ,0) ; 0f f
zz z

E V
r p r u r r b

l
σ = − + < <                                        (7) 

 

where  *( )p r  is the tensile traction induced in the plane 0z =  of the intact composite due to 
the action of the external stress state. For the analysis of the mixed boundary value problem 
posed by (6) and (7), we seek solutions of (1), which are based on Hankel transform 
developments (Sneddon [25]). The relevant solutions that satisfy the regularity conditions 
applicable to a halfspace region are  
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where ( )iA ξ  are arbitrary functions and /i ibη ξ ν= . The mixed boundary conditions (6) 

and (7) can be reduced to system of dual integral equations for a single unknown function. 
Using a finite Fourier transform, we can further reduce the dual system to a single Fredholm 
integral equation of the second-kind for an unknown function ( )tφ , which takes the form: 
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The function ( )g t  depends only on the nature of the axisymmetric external loading. For 
example, when the composite is subjected to a uniform tensile stress field at infinity 
  
                ( )g t t=                                     (11) 
 
It should be noted the function ( )tφ  will contain a multiplier that will take into account the 
magnitude and the nature of the loading. The mathematical analysis of the bridged penny 
shaped crack problem (for realt ∈  and realτ ∈ ) is formally reduced to the solution of  
 

       
1
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The integral equation (12) can be classified as a Fredholm type, even though the kernel 
suffers a discontinuity at t τ= , since the kernel is quadratic integrable (Mikhlin [26]): i.e. 
 

       
1 1 2

0 0
log finitee t dt dτ τ− →   

 
The solution of (12) provides, formally, results of importance to the idealized bridged penny-
shaped crack with a bridged region of constant length 2l  over the entire crack surface. The 
result of particular interest to fracture mechanics of composites relates to the Mode I stress 
intensity factor at the crack tip, defined by 
 

        1/ 2
IK Lim [2( )] ( ,0)zz
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Considering the result for the axial stress expressed in terms of ( )tφ , it can be shown that for 
a penny-shaped crack in a uni-directional fibre reinforced material with crack-bridging and 
subjected to a uniform far-field axial stress 0σ ,  

 

                   I 0K [2 / ] (1)bσ π φ=                        (14) 

 
In the limiting case when the elasticity of the bridging fibres 0fE → , 0β → and we have a 

penny-shaped crack located in a matrix with uni-directional cavities where originally there 
were fibres. Since the resulting material is still transversely isotropic and (1) 1φ = , the 
expression (14) for the stress intensity factor gives 
 

          I 0K 2 /bσ π=                        (15) 

 
which is the classical result. The stress intensity factor is independent of the transverse 
isotropy of the medium with directional voids. Consider the limiting case when the uni-
directional fibre-reinforced material is reinforced with inextensible fibres (i.e. fE → ∞ ): This 

is an idealization that was proposed by Adkins and Rivlin [27] and successfully developed by 
Spencer [28, 29] and co-workers for examining a wide class of problems in fibre-reinforced 
materials. In the limit, the integral equation (12) reduces to  
 

           
1

0
log ( ) 0e

t
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t

τ φ τ τ
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+  = −                                                               (16) 

 
which has a trivial solution ( ) 0tφ = . Consequently, IK 0≡ , and the stress intensity factor is 

completely suppressed. The limit, of course, has to be approached with caution since there are 
boundary layers that can exist in the medium at the crack tip, which can lead to stress 
channeling phenomena. For arbitrary values of the elastic properties of the fibre-reinforced 
composite, the integral equation (12) has a non-degenerate solution. There appears to be no 
closed form solution of this equation and the Fredholm integral equation can be solved using 
quadrature techniques that reduce the integral equation to a matrix equation. Details of the 
method are well documented in the literature (Baker [30], Delves and Mohamed [31], 
Atkinson [32], Selvadurai [33, 34]). Figure 1 illustrates the influence of the fibre-matrix 
elastic modular ratio and the geometry of the bridging zone on the stress intensity factor for 
the penny-shaped crack. 
 
4. Concluding remarks 
 
The results presented in the paper demonstrate that the presence of fibre-continuity across the 
faces of a defect can influence the development of stress intensity factors at the crack tip. This 
influence arises from two effects; the first is as a result of the elasticity of the bridging fibres 
and the second is due to the debonded length of the fibres in the vicinity of the crack. The 
accurate determination of the latter parameter is a difficult exercise. The paper considers a 
debonded region of uniform length that facilitates the mathematical modelling of the problem 
and enables the evaluation of the stress intensity factors at the crack tip. In the limiting case 
when the fibres have relatively low elastic modulus compared to the matrix the Mode I stress 
intensity factor at the crack tip reduces to that for the classical problem of a penny-shaped 
crack in a transversely isotropic elastic solid and when the fibres have a higher relative 
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stiffness the Mode I stress intensity factor is suppressed. These conclusions are derived from 
the numerical evaluation of the governing integral equation. 
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Figure 1. Normalized Mode I stress intensity factor for a bridged 

 penny-shaped crack [ I I 0K K /(2 / )bσ π=  

 
 
 


