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Abstract
This work presents an efficient computational framework for estimating the end of life (EOL)
and remaining useful life (RUL) by combining the prognostics principles with the technique of
Subset simulation. It has been named PFP-SubSim on behalf of the full denomination of the
computational framework, namely, particle filter-based prognostics using Subset Simulation. It
is shown that the resulting algorithm is especially useful when dealing with the prognostics
of evolving processes with asymptotic behaviors where the length of the dataset is limited, as
observed in practice for many fatigue degradation processes in composites. Its efficiency is
demonstrated on data collected from run-to-failure tension-tension fatigue experiments mea-
suring the evolution of fatigue damage in CRFP cross-ply laminates using PZT sensors for
obtaining data of matrix micro-crack density.

1. Introduction

Anticipating the serviceability in composite materials under fatigue loads is a challenge mainly
due to the uncertainty in the multi-scale physics of the damage process and the large variability
in behaviour that is observed. It requires the establishment of a prognostics framework to ac-
count for the observed variability into the predictions to be made about future states of damage.

The goal of prognostics is to make end of life (EOL) and remaining useful life (RUL) predictions
of components, subsystems, and systems that enable timely maintenance decisions to be made
under the presence of uncertainty [1]. In previous works by the authors [2, 3], a model-based
prognostic framework is presented as a versatile way to deal with accurate long-term predictions
for fatigue damage in composites. This framework implies complicated calibrations to tackle
with the high dimensionality of the fracture-mechanic models that are simulated multiple times
until a set of critical fatigue damage thresholds are reached. When the focus is on predicting a
damage feature whose evolutive dynamic exhibits an asymptotic behaviour (like matrix micro-
cracks density), the problem is exacerbated by the lack of prediction accuracy, unless a huge
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amount of samples are employed.

This work presents a novel efficient algorithm for estimating the EOL and RUL by combining
the particle filter-based prognostics with the technique of Subset simulation, first developed
in S.K. Au and J.L. Beck [4], resulting in a especially suited algorithm for the prognostics of
matrix micro-cracks density and stiffness reduction for carbon-epoxy laminates under fatigue
loads.

The idea behind this new algorithm, is to split the multi-step ahead predicted trajectories into
multiple branches of selected samples at various stages of the future damage process, which
correspond to increasingly closer approximations of the set of critical damage thresholds. As
an application example, data collected from run-to-failure tension-tension fatigue experiments
in CRFP cross-ply laminates, are used. Structural health monitoring in this example is accom-
plished through Lamb wave-based active interrogation using PZT sensors for obtaining data
of matrix micro-crack density together with a set of strain-gauges for measuring stiffness re-
duction. The dataset used for this example is open-access dataset distributed by NASA Ames
Prognostics Data Repository [5]. The results show that the new algorithm is efficient, and at
the same time, fairly accurate in obtaining the PDFs of EOL and RUL since the beginning
of the degradation process, precisely where previous approaches of prognostics in composites
reported in the PHM literature fail in accuracy.

2. Damage growth models

A Fracture Mechanics approach based on a modified Paris law is adopted to model the rate of
change of internal damage per cycle. Several authors [6] have adopted a modified Paris law to
analyse the rate of damage growth in composites, which is intrinsically related with the energy
released by the formation of a new crack between two existing cracks (termed as energy release
rate). The energy release rate G, can be calculated based on different micro-damage mechanic
models [6], like shear-lag models, variational models and crack opening displacement based
models. In this work, the shear-lag approach is adopted for the calculation of G to be simpler
and well-suited for symmetric cross-ply laminates1:

G =
σ2

xh
2ρt90

(
1

E∗x(2ρ)
−

1
E∗x(ρ)

)
(1)

where σx is the maximum applied axial tension, and h and t90 are the laminate and 90◦-
sublaminate half-thickness, respectively. The matrix micro-cracks density is defined by ρ = 1

2l̄ ,
where l̄ is the half crack-spacing normalised by the 90◦ sub-laminate thickness. The term E∗x(ρ),
as a function of ρ, is the effective laminate Young’s modulus due to the current damage state
which can be calculated as:
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In the last equation, the term a is defined as follows:
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1See last page for basic notation and relations
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The function R(l̄), known as the average stress perturbation function, is defined by [7]:

R(l̄) =
2
ξ

tanh(ξl̄), with ξ2 = Gyz

(
1
Ey

+
1

λE(φ)
x

)
(4)

For clearness, some terms involved in Equations 2 and 4 are grouped in Table 1. The remaining
terms can be easily obtained by the laminate theory.

Next, the modified Paris’ Law for the propagation of matrix cracks can be formulated as:

dρ
dt

= A(4G)α (5)

where A and α are fitting parameters. 4(G) is the increment of energy release evaluated for the
maximum and minimum stress in the cyclic load series: 4(G) = G|σmax − G|σmin . There is no
closed-form solution for this differential equation, therefore we approximate the derivative by
“unit-time” finite differences as:

ρt = ρt−1 + A (∆G(ρt−1))α (6)

3. Stochastic embedding

As discussed in the last section, the progression of damage is modeled at every cycle t by
focusing on the matrix-cracks density, ρt, and the normalized effective stiffness, Dt =

E∗x
Ex,0

,
defining a joint response function of two components: ft =

[
f1t , f2t

]
for matrix cracks-density

and normalized effective stiffness, respectively. Let denote by xt =
[
x1t , x2t] the actual system

response, for matrix micro-cracks density and normalized effective stiffness, respectively. Next,
the damage model is embedded stochastically [8] by adding a model-error term vt ∈ R2 that
represents the difference between the actual system response xt and the model output ft. The
following state-space model is defined:

x1t = ρt = f1t(ρt−1, θ)︸      ︷︷      ︸
Equation 6

+v1t (7a)

x2t = Dt = f2t(ρt, θ)︸   ︷︷   ︸
Equation 2

+v2t (7b)

If yt =
[
y1t , y2t

]
=

[
ρ̂t, D̂t

]
are the measurements of the system output xt, then the following

measurement function is added to the discrete state-space model to account for the measurement
error wt ∈ R2:

y1t = ρ̂t = x1t + w1t (8a)

y2t = D̂t = x2t + w2t (8b)

We use the Principle of Maximum Information Entropy [8] to choose vt and wt as i.i.d. Gaussian
variables, vt ∼ N(0,

[
σv1t

, σv2t

]
I2), wt ∼ N(0,

[
σw1t

, σw2t

]
I2), being

[
σv1t

, σv2t

]
and

[
σw1t

, σw2t

]
the variances of vt and wt respectively, and I2 the identity matrix of order 2, so they can be
readily sampled. For this example, we adopt σw1t

= 10−2 and σw1t
= 10−6, taking them as

known.
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In Equations 7 and 8, the model parameters θ are selected among the complete set of mechan-
ical and geometrical parameters describing Equations 1 to 5 (see Table 1) through a Global
Sensitivity Analysis based on variances and following the methodology proposed by [9]. The
ply properties {Ex, Ey, h} together with the fitting constant {α} emerged as sensitive parameters
to model output uncertainty. To the last cited selection is added the variances of the model error
function vt, resulting in θ = {α, Ex, Ey, h, σv1t

, σv2t
}. The rest of parameters are fixed at any point

within their range of variation, (e.g. the mean value) without significantly influencing the output
uncertainty.

The recursion given by Equations 7 and 8 is typically evaluated by particle filters (PF) [10],
whereby an approximation to the current PDF of states is readily obtained through a set of N

discrete weighted particles,
{ (

x(i)
t , θ

(i)
t

)
, ω(i)

t

}N

i=1
.

4. Damage prognostics

For predicting remaining useful life of a composite structure, we are interested in predicting the
time when the damage grows beyond a predefined acceptable threshold. Using the most current
knowledge of the system state at cycle k ∈ N, which can be estimated by PF, the goal now is
to estimate the PDF of EOL: p(EOLk|y0:k). The damage space itself may be defined by means
of a set of thresholds C = {C1, . . . ,Cc} on more than one critical parameters. In such cases,
these thresholds can be combined into a threshold function TEOL : TEOL(x, θ,C) that maps a
given point in the joint state-parameter space to the Boolean domain {0, 1}. For instance, when
a given particle i starting from cycle k performs a random walk and hits any of the thresholds
C, then T (i)

EOL = 1, otherwise T (i)
EOL = 0. The time t > k at which that happens defines the EOL

for that particle. Mathematically:

EOL(i)
k = inf

{
t ∈ N : t > k ∧ T (i)

EOL(x(i)
k , θ

(i)
k ,Ck) = 1

}
(9)

Using the updated weights at time, an approximation to the PDF of EOL is given by:

p(EOLk|y0:k) ≈
N∑

i=1

ω(i)
k δ(EOLk − EOL(i)

k ) (10)

Examples of algorithmic description of the prognostic procedure based on PF can be found in
the literature (eg. [11, 12]), to cite but a few. For convenience in notation, the augmented state
z = (x, θ) in the joint state-parameter space is defined and used hereinafter.

5. Prognosis by Subset Simulation

Subset Simulation method is an efficient simulation framework originally proposed for comput-
ing small failure probabilities for general reliability problems [4]. It is motivated by the obser-
vation that the simulation of a rare event can be transformed into the simulation of successive
intermediate events with larger probabilities. In Subset Simulation, the conditional probabilities
are efficiently estimated by means of conditional samples that correspond to specified levels of
the performance function g (defined in the last section) in a progressive manner.

Let us assume that there exist a specific failure region F into the state space that can be defined
as the intersection of m nested regions in , i.e., F1 ⊃ F2 . . . ⊃ Fm−1 ⊃ Fm = F , so that
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F =
⋂m

j=1 F j. Each subset F j (tipically termed as intermediate failure domain) is defined as
F j ≡ {zt ∈: g(zt) > C j}, with C j+1 > C j, such that p(zt|F j) ∝ p(zt)IF j(zt), j = 1, . . . ,m. By
definition of conditional probability, it follows that2:

P(F ) = P
( m⋂

j=1

F j

)
= P(F1)

m∏
j=2

P(F j|F j−1) (11)

where P(F j|F j−1) ≡ P(zt ∈ F j|zt ∈ F j−1), is the conditional failure probability at the ( j − 1)th

intermediate failure domain, and denoted hereinafter by P j for clearness.

To compute P(F ) based on 11, it is necessary to estimate the probabilities P j, j = 1, . . . ,m. P1

can be readily estimated by the standard Monte Carlo method (MC) as follows:

P(F1) ≈ P̄1 =
1
M

M∑
n=1

IF1(z
0,(n)
t ) (12)

where z0,(n)
t , n = 1, . . . ,M, are samples from identically distributed multi-step ahead predicted

trajectories simulated from p(zt). The superscript “0” here denotes that they are samples from
the initial set simulated according to the model in Equation 7.

The remaining factors cannot be efficiently estimated using the MC method because of the
conditional sampling involved. However, MCMC methods over the parameter θ can be used for
sampling from the PDF p(z j−1

t |F j−1) when j > 2, as:

P(F j|F j−1) ≈ P̄ j =
1
M

M∑
n=1

IF j(z
j−1,(n)
t ) (13)

where z j−1,(n)
t ∼ p(z j−1

t |F j−1) and IF j(z
j−1,(n)
t ) is an indicator function for the region F j, j =

1, . . . ,m, that assigns a value of 1 when g(z j−1,(n)
t ) > C j, and 0 otherwise.

Observe that it is possible to obtain Markov chain samples that are generated at the ( j − 1)th

level which lie in the subsequent level F j. They are samples conditional on F j and provide
“seeds” for simulating more samples according to p(zt|F j) by using MCMC sampling with no
burn-in required, which is an important feature of Subset Simulation to avoid wasting sam-
ples [13, 4]. We adopt the method of establishing the intermediate levels F j adaptively so that
P(F j|F j−1) ≈ P0 ∈ [0, 1] (see more details in [13]).

5.1. The PFP-SubSim algorithm

Let suppose that a sequence of measurements up to time k, y0:k, are given and that a PF filter
approximation based on N particles is obtained for the current PDF of states. Fix the conditional
probability parameter P0 (eg. P0 = 0.2 [13]) that entails the set of nested failure regions F j ⊆ F ,
j = (1, . . . ,m). Proceed as follows:

1.- Generate M predicted samples at time t > k,
{
z0,(1)

t , . . . , z0,(n)
t , . . . , z0,(M)

0

}
using the recursion

in Equation 7 (it is considered as the initial subset j = 0).
2In what follows, we use P(·) to denote probability whereas a PDF is expressed as p(·). In addition, we

use P(F) ≡ P(z ∈ F), for simpler notation
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while j = 0 or C j < C do
j← j + 1
2.- Evaluate the performance function g over the last set: g(n)

j = g
(
z j−1,(n)

t

)
.

3.- Sort g(n)
j so that g(1)

j 6 g(2)
j 6 . . . g(N)

j and fix C j = 1
2

(
g(MP0)

j + g(MP0+1)
j

)
.

4.- Select the subset of samples Z j :
{
z j,(1)

t , . . . , z j,(M1)
t

}
,M1 6 M, verifying g(n)

j 6 C j,
n = 1, . . . ,M1.
5.- Starting from the samples in {Z j} considered as seeds, reproduce them using Eq. 7 to
obtain a new set of M samples for the ( j + 1)th level (or just the final level when j = m).
if b j>C then

6.- Record the times indexes t > k ∈ N of the first-passage points→End Algorithm
end if

end while

The collection of time indexes of the final subset ( j = m) forms a discrete set for the approxi-
mation of the PDF of EOL as states in Equation 10.

6. Results and conclusions

The proposed framework was applied to fatigue cycling data for cross-ply graphite-epoxy lami-
nates. Torayca T700G uni-directional carbon-prepreg material was used for 15.24 [cm] x 25.4 [cm]
coupons with dogbone geometry. The tests were conducted under load-controlled tension-tension
fatigue loadings with a frequency of f = 5 [Hz], a maximum stress of 80% of their ultimate
stress, and a stress ratio R = 0.14. The whole parameter set-up is summarised in Table 1.

Type Parameter Nominal value Units COV (%) Prior PDF
Mechanical Ex 127.55 GPa 10 LN

Ey 8.41 GPa 10 LN
Gxy 6.20 GPa 10 LN
Gm
d0

1 · 105 GPa/m 50 LN
νxy 0.31 – 10 LN
Gyz 2.82 GPa 10 LN
h 1.5 · 10−4 m 10 LN

Fitting α 1.80 – 20 LN
A 1 · 10−4 – 20 LN

Errors σv1t
4 # cracks

m·cycle – U(0.5, 8)
σv2t

0.01 # cracks
m·cycle – U(0.001, 0.02)

Table 1. Prior information and nominal values of main parameters used in calculations. Classical laminate theory
may be use from these parameter to obtain the remaining parameters attributable to the laminate configuration.

Lamb waves signals were periodically recorded using a PZT sensor network to estimate inter-
nal microcrack density. The mapping between PZT raw data and microcrack density was done
following the methodology proposed in [14]. In addition, macro-scale damage measurements
were taken using strain gauges at periodic intervals interspersed between fatigue cycling exper-
iment. In this study, a threshold value of matrix micro-cracks density of ρ = 424.5 cracks per
meter is considered. The results are presented for three different simulation levels (m = 3) in
Figure 1(a), by using P0 = 0.2 and M = 2.4 · 104 samples per simulation level.
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Fatigue cycles, n 101 102 103 104 2·104 3·104 4·104 5·104 6·104 7·104 8·104 9·104 105

ρn [# cracks/m] 98.2 111.0 117.4 208.5 269.6 305.0 355.5 396.4 402.3 402.1 407.0 418.5 424.5

Table 2. Experimental sequence of damage for cross-ply [02/904]s Torayca T700 CFRP laminate taken from
the Composite dataset, NASA Ames Prognostics Data Repository [5]. The data are presented for micro-cracks
density (ρn corresponding to specimen L1S19 in the dataset.)
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Figure 1. Prognostics results for predicting matrix micro-cracks density from cycle k = 4 · 104 using the modified
Paris’ law model. (a): PFP-SubSim output using M = 2.4 ·104 samples per simulation level. Each subset is defined
by samples (circles) in the micro-cracks (ρ) space, where the latest intermediate predictive samples are marked in
dark purple circles. (b): Histogram representation of the estimated EOL at cycle k = 4 · 104 using PFP-SubSim
algorithm. The green triangle represents the time (in cycles) when matrix micro-cracks density will reach the final
threshold C = 424.5 [#cracks · m−1], which is known off-line from [5] (laminate L1S19), and also shown in Table
2. (c) Histogram representation of the estimated EOL at cycle k = 4 ·104 calculated using 7.2 ·104 samples without
using PFP-SubSim algorithm being used.

The results shown in Figure 1(a) and (b) are satisfactory in the sense that our algorithm has the
ability to estimate the EOL with high statistical precision with a moderate computational cost. In
Figure 1(c), a prognostic evaluation is done using the same total number of model evaluations
as when PFP-Algorithm is adopted, i.e. M = 3.4 · 104 = 7.2 · 104 samples. Observe that the
histogram representation of the EOL estimate is quite poor when FPF-SubSim algorithm is
not used, and only a better estimate may be obtained by employing more simulations, which
necessarily increases the computational cost. This computational issue is a common aspect of
prognostics of asymptotic processes, overall when conservative (or unprovable) threshold levels
are adopted. These results suggest that high efficiency can be gained by employing the PFP-
SubSim algorithm for prognostics of matrix micro-density in composite materials.
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