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Abstract
Numerical simulations of composite materials are generally performed using laminated shell
elements in the context of the finite elements method. This strategy has numerous advantages
like a low computation time and the capability to reproduce the mechanical behavior of com-
posites in most cases. However, shell simulations are not well adapted to simulate damaging
and in particular delamination. The use of cohesive zone model with a full 3D simulation is
interesting to deal with delamination but in practical the computational cost is to high and
this solution is generally restricted to very simple structures. An alternative method is pro-
posed between shell simulations and full 3D simulations. The idea is to solve the full 3D solid
problem separating the in-plane and the out-of-plane spaces. This is possible with the Proper
Generalized Decomposition. Only a shell mesh is required. Then, the computational cost is
significantly reduced and cohesive elements may be used to treat delamination in multi-layer
composites without having to manage a 3D mesh.

1. Introduction

Composite laminates are widely used due to their specific mechanical properties: a high stiff-
ness and strength with regard to its weight. However, when these materials are subjected to
loading, many failure mechanisms can occur. This damage leads to a local or global failure,
like intralaminar failure (fiber fracture or matrix cracking), and interlaminar failure (delamina-
tion). Delamination is one of the most critical and frequent damage in laminated composites.
The study of failure mechanisms and the fracture propagation is required in these materials to
ensure good knowledge of their mechanical behavior.
Different approaches were developed to study delamination. The analysis of the onset of de-
lamination generally uses a stress based criterion. The Linear Elastic Fracture Mechanics ap-
proaches (LEFM) have been developed to predict the propagation of delamination when the non
linearities are negligible. In many cases of crack growth in laminated composites, a non linear
zone exists in the crack tip and cannot be neglected. It is characterized by a softening behavior,
and it is referred to as fracture process zone.

With a small process zone size, the LEFM has been proven to be reliable to predict propa-
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gation of a pre-existing crack using the Finite Element Method (FEM) [1]. However, the LEFM
approaches presents many difficulties when implemented within finite element code. They re-
quire: i) a previous knowledge of the location of the crack and its direction of propagation, ii)
remeshing at the crack tip during the growth of delamination. To overcome these limitations
of the LEFM, other approaches have been proposed to study delamination using Damage Me-
chanics. One of these approaches is the Cohesive Zone Models (CZM) [2]. It is based on the
use of interfacial finite elements between the layers of the laminated composite. These cohesive
elements are delimited by two cohesive surfaces, linked together by cohesive forces. Compared
to the fracture mechanic approaches, the CZM has the capability to predict both onset and prop-
agation of the delamination, in conjunction with the FEM [3].

Nevertheless, the implementation of the CZM in finite element codes has several disadvan-
tages. First of all, it can lead to convergence problems, numerical instabilities, mesh sensitivity
and computing inefficiency in the presence of significant materiel non linearities. Then, a large
number of finite element calculations is often required to evaluate the sensitivity of the model to
the interface parameters. Moreover, a relatively refined mesh is needed for increased accuracy
[4], but this would lead to excessive computation time when applied to industrial structures.
Furthermore, those industrial structures are composed of a large number of layers, which re-
quire increased number of interface elements, leading to increased computational cost as well.
These limitations lead to the necessity of efficient numerical tools.

We propose a new approach based on Reduced Order Modeling (ROM) in order to treat the
delamination in composite laminates. One famous and efficient model reduction method is the
Proper Generalized Decomposition (PGD), which has been used in this work in conjunction
with the CZM. The use of the PGD discretization leads to major reductions of the computing
time and storage cost [5, 6], especially when the resulting mesh involves a high number of de-
grees of freedom. The PGD is based on the use of separated representations of the solution. It
enables to reduce the size of the multidimensional and parametric problems [7, 8]. This strategy
was successfully employed by Ammar et al. for a kinetic theory description [9] of a complex
fluid.The PGD has also been applied in other studies for thermal problems in composite ma-
terials [10] and to compute efficiently full 3D solutions using in-plane/out-of-plane separated
representation of composite laminates [11, 12].

In the present paper, the model using the PGD along with CZM (PGD-CZM) is applied to
mode I fracture problem. One aim of this work is to examine the efficiency of cohesive inter-
face elements, using the PGD, for the prediction of delamination growth under static loading.
Unidirectional 2-ply carbon/epoxy laminates were tested. Specifically, DCB (Double Cantilever
Beam) mode I fracture test was implemented.

2. Constitutive cohesive law under single mode delamination

The formulation of the cohesive zone model used in this work is the Crisfield law [13] shown
in Fig (1). It is used to describe the behaviour of the interface, which presents linear elastic
and linear softening behaviour. The process of degradation begins when the stresses satisfy one
imposed damage initiation criterion. A two-parameter cohesive law was defined for each pure
mode. These two parameters are the maximum stress (Tcoh) and the energy release rate (Gic).
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Figure 1. Cohesive law for the mode I.

KI is the interface element stiffness. The critical separations (δI
c) is defined when the interfacial

stress reaches maximum, and the maximum separations (δI
m) is defined when the stress becomes

zero. The relation between local separation and the interlaminar stress (σzz), shown in Fig (1),
can be expressed as:
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Where dI is the damage variable :
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, i = (x, y, z), di ∈ [0, 1] (2)

3. Problem formulation

A zero-thikness linear quadrilateral cohesive element shown in Fig (2) is used to simulate
delamination problem in conjunction with the PGD model. The constitutive equations of these
elements are mentioned in the previous sections in the case of mode I delamination. The 3D
mesh is separated into a 2D and a 1D meshes as represented in Fig (2). In the case of the
finite element approach, the number of cohesive elements is related to the number of nodes
in the mid-plane surface and to the number of layers. In the PGD approach the number of
cohesive elements in the thickness is only equal to the number of interfaces between layers. The
displacement discontinuity δ across the interface can be expressed in terms of the displacement
vector u computed on two sides of the discontinuity (u+ for the upper side and u− for the lower
side):

δ = u+ − u− ⇒

δx

δy

δz

 =

 u+ − u−

v+ − v−

w+ − w−

 (3)

The weak form of the equilibrium equation for a linear elastic materials with a cohesive surface
Γcoh and a cohesive stress vector Tcoh, without body force gives:
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Figure 2. Definition of cohesive surface and mesh discretization.

∫∫
Ω

ε(u∗).(A.ε(u))dΩ +

∫
Γcoh

Tcohδ
∗dΓcoh =

∫
Γ

Textu∗dΓ (4)

where u∗ and δ∗ are the virtual displacement and virtual separation, respectively. Text is the ex-
ternal force on the boundary Γ. ε is the strain tensor and A is a matrix related to the constitutive
equation in each layer for an orthotropic material.
The displacement field u(x, y, z) is approximated using the following separated form of the PGD
approach:

u ≈ un(x, y, z) =

n∑
i=1

Fi(x, y) ◦Gi(z) ∀(x, y, z) ∈ Ω (5)

with Fi(x, y) =

 F i
u(x, y)

F i
v(x, y)

F i
w(x, y)

 are functions of the in-plane coordinate and Gi(z) =

 Gi
u(z)

Gi
v(z)

Gi
w(z)

 are

functions involving the thickness coordinate. ◦ denotes the Hadamard product. Equation (5) is
then equivalent to:

un(x, y, z) =

 un

vn

wn

 =



n∑
i=1

F i
uG

i
u

n∑
i=1

F i
vG

i
v

n∑
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F i
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w


It is assumed that the first n modes have been determined at previous iterations. In order to
enrich the separated approximation, some new functions R(x, y) and S (z) have to be determined.
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The new approximation can be written as:

un+1(x, y, z) = un(x, y, z) +

 Ru(x, y)S u(z)
Rv(x, y)S u(z)
Rw(x, y)S w(z)

 (6)

The virtual separation δ defined by the equation (3) is approximated using the separated repre-
sentation:


u+

n+1 − u−n+1 = Ru(x, y) (S u(z+) − S u(z−)) +
n∑

i=1
F i

u(x, y)
(
Gi

u(z+) −Gi
u(z−)

)
v+

n+1 − v−n+1 = Rv(x, y) (S v(z+) − S v(z−)) +
n∑

i=1
F i

v(x, y)
(
Gi

v(z
+) −Gi

v(z
−)

)
w+

n+1 − w−n+1 = Rw(x, y) (S w(z+) − S w(z−)) +
n∑

i=1
F i

w(x, y) (Gw(z+) −Gw(z−))

(7)

The initial position of the two faces of the cohesive zone are defined by their coordinates on Ωz

denoted z+ and z− for all x ∈ Ωx. After discretization, z+ and z− define the coordinate of two
nodes on Ωz that may be initially at the same position. Finding the couple of functions (R, S)
is a highly non linear problem. For that purpose, an alternating directions strategy is used. At
each iteration a single function R or S is computed alternately assuming the other known. This
procedure continues until convergence. So there are two steps:

1. finding R assuming S

2. finding S assuming R

For more details about the PGD resolution technique, the reader can refer to [5].

4. 3D simulation of a DCB test using the PGD approach

The specimen geometry of the DCB test, with boundary conditions and loadings are shown in
Fig (3). This test considers a composite laminate with an initial delamination crack length
denoted a.

The properties of the material (a unidirectional carbon/epoxy composite) and the ones of the
cohesive interface are listed in Table (1).

A 3D DCB test case is realized to focus on the efficiency of PGD when increasing the number
of nodes in the mesh. The main advantage of the PGD approach in comparison with the FEM
approach is the reduction of the computational time. Another asset is the easy insertion of the
cohesive elements. The functions Fi

w and Gi
w for i = [1, 2] of the separated representation are

depicted in Fig (4).

The deformed shape and the longitudinal stress distribution (σxx) for an imposed displacement
equal to 8mm are shown in Fig (5). This simulation was performed with 20000 nodes in the
2D mesh and with 30 nodes in the 1D mesh (thickness). In 3D, that represents a total of 1.8106
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Figure 3. Specimen geometrical dimensions.

Material properties Interfacial properties
Ex(GPa) 151.4 GIc(N/mm) 0.3

Ez = Ey(GPa) 12 GIIc(N/mm) 1.6
Gxz = Gxy(GPa) 5.11 σc(MPa) 60

Gyz(GPa) 4.3 τc(MPa) 139
νxz = νxy 0.31 Kz(N/mm3) 1.104

νyz 0.39 Kx,y(N/mm3) 5.104

Table 1. Material properties for carbon/epoxy.

degrees of freedom. The PGD algorithm enabled running the simulation on a simple laptop in
less than 15 minutes. This represent an enormous gain of time when compared to classical 3D
FEM simulations with comparable mesh refinement.

The cohesive surface is shown in Fig (6). In this figure, the blue color indicates the undamaged
zone, the red color indicates the damaged zone and the process zone is the small part between
them.

5. Conclusion

In this paper, an approach based on the PGD have been proposed to simulate mode I delam-
ination in composite laminates in conjunction with CZM. It is shows that Proper Generalized
Decomposition can be used as an alternative to overcome the computational drawbacks of the
Finite Element Method such as the rapid increase in the number of degrees of freedom, the
large computational time and the storage limitation. The reduction of the number of interface
elements was achieved due to the PGD-CZM new discretization strategy, which minimize mod-
eling complexity.
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(a)

(b)

Figure 4. Functions F i
w and Gi

w in the separated representation of the displacement field: (a) i=1, (b) i=2.

Figure 5. The σxx stress distribution for the 3D DCB specimen.

Figure 6. Crack surfaces of 3D DCB test.
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