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Abstract
This paper presents a fast and efficient geometrical method to optimize LRI processes based
on Level set methods. Previous work presents, until now, the first method to find the optimal
inlet and outlet location in LRI processes [1],[2],[3]. These papers aims to design the
distribution channel of resin infusion processes where are not use iterative methods. For this
purpose, the algorithm commonly used has been replaced for FPCS (Flow Pattern
Configuration Space) and Delaunay triangulation.
The FPCS has been developed with the variables to be optimized, in this case distance. In the
case of 2.5D geometries, the use of these spaces reduces the size of the search space. This
reduction, combined with the Delaunay triangulation for 2D allows us to compute the medial
axis, which is the basis of the optimal resin channel distribution.
However, the use of the FPCS and/or Delaunay triangulation has an important limitation.
The FPCS cannot be applied to pieces with curving areas or holes where the geodesic
distance cannot be computed from a single point. In addition, 3D Delaunay triangulation
cannot be applied directly for manifolds (2.5D) because it was developed for 3D objects.
Therefore, the aim of the present paper is to replace the computational tool proposed in our
previous work, [1],[2],[3], that allows to compute the optimal resin channel distribution for
whatever case. Although there are algorithms to compute the medial axis directly in a
complex manifolds with holes, see for instance [4], a level set method is selected as a
computational tool. It is due to level sets not only allows to compute the medial axis with
holes in a manifold but also allows us to improve the design of the optimal resin channel
distribution. Level set enables us to introduce some new parameters as a design parameter
not treated in the present paper. At the end of the paper, some numerical examples are shown.

1. Introduction

Liquid Resin Infusion (RI) processes are one of the common techniques used in the
industry for large composite parts production. This technique uses vacuum pressure to drive
the resin into a laminate. Preform is laid dry into the mould and the vacuum is applied before
the resin is introduced. Once a complete vacuum is achieved, resin is sucked into the laminate
via placed tubing. Figure 1 (left) shows a diagram of this process. Negative pressure allows
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designers to introduce resin channel network structures in the areas where the quality of the
piece is not relevant, see Figure 1 (left).

Figure 1. Liquid Resin Infusion Process (left). Spiral blind, pipe, (right)

Resin infusion processes are usually slow due to the low-pressure gradient and the size
of the geometries to infuse. For this reason, the channels are necessary to reduce cycle times.
Using it as in ¡Error! No se encuentra el origen de la referencia. (left), the filling of a boat
hull with 11.8 m length can be completed in 195 min.

Spiral blind (pipes), is commonly used to build these channels, Figure 1(right). These
components are hollow tubes made with a plastic strip rolled in a spiral shape. The resin flows
much faster inside the pipe than inside the preform. When the resin fills the channel, it begins
to permeate the preform through the holes left by the spirals.

There are many contributions in the literature on how to place the injection nozzles
and vents in rigid countermould processes, as RTM (Resin Transfer Moulding). In these
cases, inlets and outlets are points. However, there are few contributions regarding semi-rigid
countermould processes, [5],[6]. This is due to it is possible to introduce resin channel
distributions, that they can take complex shapes.

1.1. Previous works. Optimal resin channel distribution computation

The aim of the optimization algorithms in LRI processes is the same than RTM; the
flow front must be achieve the vent (in LRI the contour) at the same time and the filling time
must be reduced as more as possible. The literature does not offer tools to compute it.
However, the industry, and in particular, expert teams has the ability to design the resin
channel distribution and getting amazing results. This expert teams use trial and error and the
optimal Resin channel distribution obtained is like the depicted in Figure 1 (left). Then, the
aim of our previous works, was to obtain a tool to compute the same than expert teams
[1],[2],[3] in an automated way. These works divide the optimal channel distribution in two
parts, called “main branch” and “secondary branches”, see figure 1 (left). Main branch was
obtained by applying the Delaunay triangulation to the vent, the entire contour in LRI process.
This algorithm provides the circles and the vertex that are tangent with at least three contour
points, see Figure 2.
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Figure 2. Main branch computation (Left). Example of a Boat (Right)

Main branch was improved in [1],[2],[3], by means of the same concept, the
secondary branches. Therefore, each secondary branch is equidistant to at least two contour
nodes. Then, the bisector between these two nodes, passing through the center, intersects in a
point of the main branch. Thus, the secondary branch was defined from the point of
intersection with the main branch and the center that ensures the tangency, see figure 3.

Figure 3. Secondary branch computation (Left). Example of a Boat (Right)

The secondary branch has a degree of freedom. The center and the radius of each secondary
branch can be modified without losing the tangency, see Figure 3 (middle). Thus, the radius
of all secondary branches can be homogenized in order to have the same effect on the contour.
Hence, when a radius value of the main branch is selected, all the secondary branches shall
have the same value. For a given secondary branch, the nearest secondary branches located
into the circle are deleted because has similar effect to the contour. Therefore, the lower the
value of the radius selected is, the greater the number of secondary branches. This fact
provides a degree of freedom in the design process that it was solved in [2]. For the one hand,
once the filling of the mould has been completed, the resin located in the pipes is trapped
provoking a waste of resin and increasing the cost of the final piece. This added cost is
proportional to the length channel. The labour cost in terms of the assembling time of the
injection channel network also increases as length raises. For the other hand, a high channel
resolution allows us to reduce filling times and the flow front shape is more similar to the
shape of the mould contour. In [2] was proposed an index that takes into account the channel
efficiency. It is defined as a relationship between the energy inverted, in this case the quantity
or pipe length and the total filling time reduction.

The use of Delaunay triangulation is the most efficient tool to compute the main and
secondary branches because the circle and its radius defines itself the equidistance between
the contour and the computed vertex. Unfortunately, this fact do not occurs in 2.5D
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geometries. In this case, the alternative is to use the Delaunay triangulation for 3D geometries.
However, the equidistance is computed with a sphere and it does not guarantee equidistance
in 2.5D geometries. In order to solve this problem, in [1] was introduced a configuration
space concept. The idea is very simple; replace the Cartesian space for another space
developed using the variables of interest. For our case, a Flow Pattern Distance Space (FPDS)
is developed as a distance map for a selected point, see Figure 4.

a) Flow Pattern distance Space (FPDS)

b) Boat example. Mould (left), FPDS-2D (right)

Figure 4. a) Flow Pattern Distance Space. b) Boat example.

To develop the FPDS, the geodesic distance between a selected point and all the mould nodes
is computed. With this distance and the angle projection, a 2D map is calculated, Figure 4 (b).
In this 2D map, a Delaunay triangulation is computed as 2D geometries. The results are
translated to the real world because both spaces are node to node connected. However, the
literature does not offer algorithms to compute geodesic distance with the ability to avoid
holes or take into account curved parts. In order to solve this problem, the literature offers a
few solutions; see [4], to compute the medial axis in 2.5D geometries. Medial axis is the
research topic in computational geometry that can be equivalent to the main branch. However,
the present paper explores the use of level sets because apart to solve the 2.5D problem,
allows to introduce a new design parameters.

2. Level set methods to compute optimal resin channel distribution

Following [8], we will describe the resin advancing front as the zero set of an implicit
function φ. The evolution of this implicit function under an external velocity field will be
given by

ft +v×Ñ f = 0 (1)
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Here, sub-index indicate a partial derivative with respect to that variable. The gradient of the
implicit function is defined as:
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Here, sub-index indicate a partial derivative with respect to that variable.
simplifying assumptions mentioned in the introduction, we assume that the velocity
field at the resin flow front is normal to the implicit function φ itself, v = an, we will have

ft + a Ñ f = 0 (2)

and, since our ultimate goal is to compute an approximation to the medial axis, we are
interested in computing a signed distance function, i.e., |φ| = 1. For this it is sufficient to
take a = cte. For simplicity we will take a = 1, so as to give

ft = - a= - 1 (3)

See Section 6.2 of [7] for details on the discretization of this equation.
method for the construction of a signed distance function could be useful to us. See [7],
sections 7.3 to 7.5 on the basis of the Fast Marching Method. In Figure 4 a representation of
the evolution of the level set curves giving rise to the approximate location of injection
nozzles is made.

Figure 4. Level set of a rectangle

Figure 5 represents the medial axis obtained through level set representation

Figure 5. Medial axis of the rectangle
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1.1. Secondary branches computation by means of level set

As can be mentioned in the introduction, the secondary branches are defined by means of the
bisector between two neighborhood nodes and the intersection with the medial axis. This fact
guarantees that secondary branches are perpendicular to the contour. It is the same than the
level set method hereinbefore explained. The gradient Ñ f is perpendicular to the contour and
then, the velocity field too. Thus, the secondary branch using level sets is defined as the path
followed for each velocity vector (that is perpendicular to the contour) and the intersection
with the medial axis, see Figure 6.

Figure 6. Secondary branches

This path gives itself the distance to the contour. It is the same than the radius computed by
Delaunay triangulation in [1], [2], [3], Figure 7.

Figure 7. Main branch

As it can be observed, there is a high number of secondary branches, see Figure 5. However,
many of them have almost the same effect as they are very close to each other. In our previous
works, [1], [2], [3], a filtering criterion was proposed. It imposed that, within the tangent
circle of a secondary branch, there cannot be another center, that is, another secondary branch.
The same criterion can be constructed by level sets, but in this case, outward level set, see
Figure 8
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Figure 8. Outward level set.

The methodology is like follows. First, a radius is selected. Second, outward level set is
computed for an arbitrary secondary branch until the predefined distance is achieved. Third,
the secondary branches located inside to the zone are deleted. Fourth, the nearest non-deleted
secondary branch is selected and outward level set is computed again. The process concludes
when all redundant secondary branches are filtered. Figure 9 shows an example of a rectangle
mould.

Figure 9. Secondary branches filtered by outward level set

3. Conclusions and future works

This paper presents a fast and efficient geometrical method to optimize LRI processes based
on Level set methods. Previous work presents, until now, the first method to find the optimal
inlet and outlet location in LRI processes [1],[2],[3]. These papers aims to design the
distribution channel of resin infusion processes where are not use iterative methods. For this
purpose, the algorithm commonly used has been replaced for FPCS (Flow Pattern
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Configuration Space) and Delaunay triangulation. However, the FPCS cannot be applied to
pieces with curved areas or holes where the geodesic distance cannot be computed from a
single point.
Therefore, in the present paper proposes a level set method to replace FPCS+Delaunay
triangulation. As it is demonstrated, Level sets allow us to obtain the same results than
[1],[2],[3] but without the limitations of FPCS+Delaunay.

There are another alternatives to solve the restriction, see for instance [4]. However, we select
level sets because not only allow us to compute the main and secondary branch with holes in a
manifold but also allow us to improve the design of the optimal resin channel distribution.
Level sets enable us to introduce some new parameters not treated in the present paper to
improve the process design. In particular, it can be possible to obtain with level sets an
accurate approximation for the flow front shapes. It can be useful to define accurately the
optimal size of the injection channel.
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