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Abstract 
This paper describes a junction between a composite plate and a metal component as well as 
a method of modelling a heterogeneous composite structure with curvilinear reinforcement. 
In the present case, fastening between the metal component and the composite plate is 
realized by means of a steel bolt. Curvilinear trajectories of fibres are modeled for the plate. 
They are adapted to the geometry of the plate and current loading. The functionally graded 
material is simulated on the basis of these trajectories. Fibre orientation and fibre volume 
fraction are heterogeneous throughout the plate. It appeared that load-carrying capability of 
the created structure with the curvilinear reinforcement increases by 8.2 times in comparison 
with the structure having the rectilinear reinforcement. 
 
 
1. Introduction 
 
The disadvantage of composite structures is their weak fastening joints as a result of the 
traditional perforation technology for rivets or bolts. Nature suggests an alternative approach 
to the design of composite structures: producing joints without cutting fibres and using a 
curvilinear reinforcement structure such as in the ‘branch-trunk’ or ‘trunk-root’ junctions of 
wood. 
 
 
Different methods have been developed to reduce stress concentrations for composite 
structures. Many early works for reducing of the stress concentrations describe the shape 
optimization [1-5]. Various reinforcements can be used to reduce the stress concentrations as 
in [6]. Many methods apply the possibilities of varying the stiffness into composite structures 
[7-12]. The modelling methods of curvilinear reinforcement structures use changing the fibre 
orientation. The fibre orientations were arranged along the maximum principal stress in each 
element for a composite plate with a hole to simulate the structure [7,8]. The value of the 
stress concentration factor along fibres reduces from 7 to 4 for the structure [7] but shear 
stress is practically equal to zero [8]. There is another approach where the fibres orientations 
were optimized in a composite plate having a hole [9]. It appeared that the value of the stress 
concentration factor along fibres for the structure reduces from 7 to 1.5. All these methods 
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demonstrate that the stress concentrations can be reduced by the curvilinear reinforcement 
structures and consequently lead to increasing of load-carrying capability. 
 
 
The paper describes the design of joints between composite and metal components as well as 
a modelling method for composite structures with curvilinear reinforcement that allows the 
trajectories of fibres to be adapted to geometric discontinuities (holes, notches, bolts and so 
on). The main idea of such joints is that an embedded metal ring is inserted into a composite 
part and metal members are joined to this ring in the usual way. The ring is a geometric 
discontinuity in the composite part. The trajectories of fibres are adapted to the geometric 
discontinuity and current loading before the curvilinear reinforcement structure is simulated. 
In this case, the connection of the embedded ring and a metal member with a metal bolt is 
considered. 
 
2. Definition of the problem 
 
This investigation focuses on modelling a heterogeneous composite plate. Fibre orientation 
and volume fraction of fibres change locally through the plate from point to point. An 
embedded ring is inserted into the composite plate. To join the ring and a metal member a 
steel bolt is used. The dimensions of the rectangular plate are shown in Figure 1 where its 
length = 135 mm and its height = 80 mm. The outer radius of the embedded ring is R1 = 10 
mm; the inner one is R2 = 8 mm. The radius of the bolt is 8 mm. Because of the symmetrical 
geometry, material and boundary conditions only half of the plate is analysed. 
 

 
Figure 1. Dimensions and boundary conditions; 1– composite plate, 2 – ring, 3 – bolt. 
 
Stress of σo = 1 Pa is applied to the left side of the plate. The bottom part of the plate and the 
embedded ring have a constrained degree of freedom in vertical displacement along the y-axis 
when y = 0 mm. An outer profile of the bolt is constrained in vertical and horizontal 
displacements along the x-axis and y-axis. A contact surface is simulated between the 
composite plate and the ring. A contact surface between the ring and the bolt is simulated in 
the same way. The friction coefficient for the contact surfaces is zero. The boundary 
conditions are shown in Figure1. 
 
 
The solution of the problem is obtained by means of the finite element method (FEM) using 
ANSYS software. Two-dimensional quadrilateral elements are used in the calculation model. 
The ring and the bolt are modelled from isotropic material. Properties of the steel A36 [13] for 
the bolt and the embedded ring are: E = 200 (GPa) и µ = 0.26. Each element of the 
heterogeneous composite plate has its own orthotropic material. The elastic material constants 
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of the orthotropic material depend on the fibre volume fraction, which is not homogeneous 
along the coordinates of the plate. More detailed information about the modelling of 
composite material is given in section 3. 
 
3. Modelling method for functionally graded material 
 
3.1. General scheme 
 
After simulation of the geometry of the structure, material and boundary conditions, the stress 
fields are obtained. The solution is obtained with the FEM. It should be noted that an 
orthotropic material for the whole plate is used for the first iteration. As a result the 
distribution of fibre trajectories is received with no shear stress along these fibre trajectories. 
On the basis of these trajectories, the functionally graded material (FGM) is simulated. Each 
element of this structure has its own mechanical properties depending on the distribution of 
fibres. The fibre direction is modelled by assigning to each element its own local coordinate 
system, which is arranged along the maximum principal stress that corresponds to the fibre 
direction. A change of the volume fraction of fibres depends on the distribution of the fibres 
obtained. The elastic material constants change according to the fibre volume fraction. Fibre 
orientation and material properties are constant within an element. Thus, the created discrete 
model takes into account the local change of direction and the volume fraction of fibres. After 
local material properties are assigned to each element, the stress state in the new structure 
changes. The new structure has other trajectories of fibres conforming to the new stress state. 
The solution of this problem has an iterative character and the process will end when the field 
of stresses from iteration to iteration is not practically changed. 
 
3.2. Modelling of curvilinear fibre trajectories 
 
The solution for creating fibre trajectories is achieved by a numerical method. The strain-
stress state is calculated by the FEM. The general algorithm scheme looks as follows. 
Knowing the field of stresses in elements, it is possible to find the angle β for any point of the 
structure along which shear stresses are zero. Varying the length of the segment ∆, which 
depends on the stress gradient, and defining the angle β, one can build a row of sequential 
points. From this row a trajectory of principal stresses can be created along which shear 
stresses are zero. Thus, the required curvilinear trajectories of the principal stresses are 
obtained. With these trajectories FGM can be simulated. The method for creating fibre 
trajectories is described in more detail in [14]. 
 
3.3. Simulation of fibre orientation and mechanical structure properties 
 
3.3.1. Simulation of fibre orientation 
 
After the curvilinear trajectories of fibres are determined, fibre orientations and mechanical 
structure properties are simulated. To simulate fibre orientation a local coordinate system is 
used. A local coordinate system is assigned to each element of the heterogeneous composite 
plate. The origin of coordinates is located in the centre of an element and its x-axis is directed 
along the maximum principal stress. 
 
3.3.2. Simulation of mechanical structure properties 
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Each element of the structure corresponds to its local volume fraction of fibres, which 
depends on the obtained distribution of fibre trajectories. In this case, the volume fraction of 
fibres depends on the distance between the fibres. For each ith element located inside the first 
zone the distance between the fibres is calculated in the following way. Two normal lines are 
drawn from the centre of the ith element to the nearest fibre trajectories. The sum of two 
lengths of created segments (ai, bi) gives the required distance between the fibres for ith 
element (Figure 2). After the distance is obtained for each element from the first zone, the 
volume fraction of fibres is calculated. Let us suppose that the maximum volume fraction of 
fibres (Vfmax = 0.577) [15] is assigned to the kth element, which has the smallest distance 
(ak+bk = min(ai+bi)). Then with Equation (1) the volume fraction of fibres Vfi for all ith 
elements is obtained: 
 

Vfi = Vfmax × (ak + bk) / (ai + bi) (1) 
 
A specific orthotropic material is assigned to each element of the structure. Its elastic material 
constants depend on the volume fraction of fibres. Elastic moduli and Poisson's ratio are 
calculated by Equations (2) taken from [16]: 
 

E1 = Vf × E1f + (1 - Vf) × E1m 
E2 = E2f × E2m / (Vf × E2m + (1 - Vf) × E2f) 
G12 = G12f × G12m / (Vf × G12m + (1 - Vf) × G12f) 
µ12 = Vf × µ12f + (1 - Vf) × µ12m, 

(2) 

 
where E1f, E2f, G12f are Young's moduli for fibre, E1m, E2m, G12m are Young's moduli for 
matrix and µ12f, µ12m are Poisson's ratios for fibre and matrix respectively. 
 

 
Figure 2. The first zone and the second zone for the plate. 
 
The mechanical properties for the carbon fibre and the matrix used in the analysis are given in 
Table 1 [17]. Knowing the volume fraction of fibres in each element and the elastic material 
constants for the fibre and the matrix, the mechanical properties of orthotropic material are 
calculated using Equations (2). Therefore the number of these orthotropic materials is equal to 
the number of elements of composite plate. 
 

 E1 (GPa) E2 (GPa) G12 (GPa) µ12 
Fibre 276 19.5 70 0.28 

Matrix 4.76 4.76 1.74 0.37 

Table 1. The mechanical properties for carbon fibre and matrix. 
 
3.3.3. FGM modelling features 
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Unfortunately, the above-described modelling method cannot be used for the second zone 
(Figure 2) because it is impossible to calculate the distance between fibres. That means 
another approach needs to be applied to the zone. For the second zone four FGM modelling 
methods were developed. The first three methods have both strong and weak points. They 
cannot solve the two following problems simultaneously, however: 

(1) provide the iterative process; 
(2) eliminate singular elements in zone A (Figure 2), which are located in the area 
between the opening and the bottom fibre. 

 
 
The fourth method solves both problems, which is why it was used in the current analysis. 
The main purpose of the method is to assign the fibre orientations and the volume fraction of 
fibres of the top and bottom trajectories (marked in red in Figure 2) to the elements located 
inside the second zone. Let us consider this algorithm in more detail. First, depending on the x 
coordinates the values of fibre orientations (β) and the volume fraction of fibres (Vf) are 
gathered along the top and bottom trajectories. Thus, the functions β(x) and Vf(x) are formed. 
Second, depending on x the values (β and Vf) are set for elements from the second zone. It 
appears that the fibre orientations and the fibre volume fraction for the second zone with 
respect to the coordinate y are the same, i.e. the simulated trajectories of fibres for the second 
zone (marked in green in Figure 2) are parallel to the top and bottom trajectories. Thus, the 
FGM is simulated for the second zone. 
 
4. Results and discussion 
 
After the iterative process was completed, the next results were obtained. The trajectories of 
the maximum principal stresses for the plate as well as the distribution contours of its fibre 
orientation angles and the fibre volume fraction are shown in Figure 3-5. 
 

 
Figure 3. The trajectories of the maximum principal stresses for the plate. 
 

 
Figure 4. The distribution contour of the fibre orientation angles for the plate. The angles are measured in 
degrees. 
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Figure 5. The distribution contour of the fibre volume fraction for the plate. 
 
The contour of stress distribution along fibres (σ1) is illustrated in Figure 6. As is seen in 
Figure 6, the value of the maximum stress concentration factor along fibres (Ktmax = σ1max/σo) 
is 28.03 and its coordinate location practically coincides with the position of the maximum 
fibre volume fraction (Vfmax). It is interesting that the value of Vfmax increases by 27.48 times 
in comparison with the value of the fibre volume fraction (Figure 5), which has the coordinate 
location (0,20). In fact, the strength of the composite material depends on the fibre volume 
fraction. The ultimate tensile strength of the composite material in the fibre direction (σf

*) can 
be calculated by Equation (3) taken from [16]: 
 

σf
* = σfmax × Vf + (σm)ε1max × (1 - Vf), (3) 

 
where σfmax is maximum fibre tensile stress in the fibre direction, (σm)ε1max is matrix stress at a 
matrix strain equal to the maximum tensile strain in the fibres. 
 

 
Figure 6. The contour of stress distribution along fibres. The stress is measured in Pa. 
 
To estimate load-carrying capability a simplified failure criterion was used. The failure 
criterion is calculated by Equation (4). The composite material fails when ζ ≥ 1. It is known 
that σf

* = 2724 (MPa) at Vf = 0.577 [15]. (σm)ε1max is not taken into account as 
σfmax>>(σm)ε1max. The ζ can be obtained for each element knowing σ1, Vf and σfmax. The 
distribution contour of the failure criterion (ζ) is shown in Figure 7 when ζmax = 1. As is seen 
in Figure 7, the value of the maximum failure criterion (ζmax) increases by 2 times in 
comparison with the value of the ζ located at the point (0,20), while in the structure with 
rectilinear reinforcement (orthotropic material) under identical conditions the value of the ζmax 
increases by 16.4 times. It has been established that the shear stress for the curvilinear 
reinforcement structure is low and does not lead to matrix cracking but the compression stress 
transverse to fibres (σ2) in zone B (Figure 2) is high and causes the local crumpling of the 
material in the zone. 
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Figure 7. The distribution contour of the failure criterion (ζ). 
 

ζ = σ1 / σf
* (4) 

 
The iterative process is completed when the values of σ1max/σ1o and ζmax/ζo are changed 
simultaneously not more than by 1% between iterations. Here σ1o and ζo are the values of σ1 
and ζ located at the point (0,20). Seven iterations are necessary to fulfill the conditions. The 
functions σ1max/σ1o (iterations) and ζmax/ζo(iterations) are shown in Figure 8. The total elapsed 
time of the analysis is 42 hours. 
 

 
Figure 8. a – the function σ1max/σ1o (iterations) at point (79.78,10.22); b – the function ζmax/ζo (iterations) at point 
(83.26,9.74). See Figures 6,7. 
 
5. Conclusions 
 
It was demonstrated that the curvilinear reinforcement structure significantly increases the 
load-carrying capability. The simplified failure criterion was used to obtain the quantitative 
assessment of the load-carrying capability and understand effectiveness of the structure. It 
appears that the load-carrying capability for the curvilinear reinforcement structure increases 
by 8.2 times in comparison with the rectilinear reinforcement structure. However, it is 
necessary to fulfill more detailed investigation assessing the strength of the obtained structure 
according to specified criteria and taking into account the actual failure mechanisms of fibre 
composites. Applying the method of modelling, it is possible to design advanced joints 
between composite and metal components. 
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