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Abstract

This study addresses the effect of the coordinate derivatives of material properties on the ther-

mal stress and strain states in adhesively bonded in-plane clamped functionally graded joints.

The consideration of material derivatives indicates lower stress and strain levels in the func-

tionally graded plates and in the adhesive joints, and that the strain distributions are completely

affected whereas the stress distributions remain similar but the size of the high stress regions

changes. The adhesive layer is most critical member of adhesively bonded plates since it experi-

ences considerable strains due to thermal mismatches of the adhesive and material composition

at both sides of the adhesive interface. The study showed that the consideration of the material

derivatives was necessary to calculate correctly the actual stress and strain distributions.

1. Introduction

Thermal and structural loads result in discontinuous stress concentrations along bi-material

interfaces of layered composites due to their discontinuous thermal and mechanical properties.

In practice, high thermal gradients need to be reduced through thickness of structural member.

However, stress and deformation states are affected by thermal and mechanical mismatches

between layers. Functionally graded materials achieve a smooth transition among the layers

of the composite material [1, 2] by having a continuously varying material composition along

one dimension of a structure. The thermal residual stresses induced by processing or in-service

thermal conditions or thermal loads under typical edge conditions have been investigated in

detail [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] whereas the studies on the effects of the structural loads

in functionally graded plates are limited [6-8,14]. A detailed introduction to the fundamentals

of functionally graded materials [2] and an extensive review concerned with thermal stress

problems are available [3].

The thermoelastic stress analysis of a functionally graded plate using the first-order shear de-

formation plate theory showed that the thermomechanical coupling played a more important

role when the power law exponent is small [6]. The material distribution affects the through-

thickness deflections and stress states of functionally graded plates [7]. The assumption of

a constant through-thickness deflection is invalid for the functionally graded plates under the

thermal loads [8]. The through-thickness material composition variation and the size of the
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functionally gradient layer have effects on the thermal stress characteristics [9]. However, the

averaging estimation methods of material characteristics produce stress distributions, with con-

siderable difference from those by the finite element discritized models [10, 11].

Apalak et al. investigated the thermoelastic behaviour of functionally graded rectangular plates

and adhesively bonded functionally graded rectangular and circular hollow plates for temperature-

independent, in-plane, not through-thickness, material composition variations and for an in-

plane heat flux [14, 15, 16]. The type of in-plane heat flux had effects on both heat transfer

period and temperature levels rather than the in-plane temperature profile, and the residual ther-

mal stresses were strongly dependent on the in-plane material composition gradient, and could

be reduced by tailoring in-plane material composition. The two-dimensional heat conduction

problem of a thick hollow cylinder with finite length made of 2D-FGM subjected to transient

thermal boundary conditions showed that the material distribution in two directions affected

both the temperature distribution and time responses of the cylinder [17]. A study on the steady

thermal stress problem of 2D-FGM plate having a linear temperature load on its upper surface

indicated that the optimization of a 2D-FGM plate is more wide and concrete basis of calcu-

lation for design [18, 19]. Nemat-Alla [20] proposed suitable functions representing volume

fractions of the 2D-FGMs, and showed that the 2D-FGMs have high capability to reduce ther-

mal stresses. Nemat-Alla et al. [21] also investigated the elastic-plastic stress behaviours of

the 2D-FGMs. They proposed a 3D finite element model of the 2D-FGM plates, and found

that heat conductivity of the metallic constituents of FGM has a great effect on the temperature

distributions. The lower temperature variations and lower stresses can be obtained using the

2D-FGMs without fracture or plastic deformations.

The present thermal stress analyses have concentrated on the one- or two-dimensional function-

ally graded structures through their thickness. Today’s fuel cell technology allows the use of

FGMs in solid oxide fuel cells in order to reduce mismatches in the thermal expansion coeffi-

cients between electrolyte and anode [22]. Wang et al. [23] presented a comprehensive review

on five categories of fuel cells, and related studies. Fuel cells can be designed by considering

convective and conductive heat transfers, heat and mass transfer, multiple fluid flows as well as

electrochemical reactions [24, 25]. Consequently, a planar design of a solid oxide fuel cell may

experience in-plane or through-thickness heat transfer due to heat fluxes. Therefore, the suit-

ability of in-plane one- or two-dimensional functionally graded material distributions requires

an theoretical investigation for these types of practical applications.

2. THEORETICAL MODEL AND ANALYSIS

In this paper the functionally graded plate has a material composition with two constituents,

ceramic and metal, and its material composition is bi-directional in the plate plane. The deter-

mination of the physical/mechanical properties of the material composition at any point, thermal

and stress analyses are explained in the following sections:

2.1. Material Properties

In general, a FGM is designed as a layer with continuous composition variation through a direc-

tion, especially through-the-thickness, of plate in order to provide high-temperature resistance

on one of the plate edges using the low thermal conductivity of ceramic constituent. How-
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ever, an actual FGM consists of ceramic and metal particles with arbitrary shapes mixed up in

randomly dispersed structures. Thermo-mechanical properties of an FGM are function of this

shape and orientation of ceramic and metal particles, the dispersion structure as well as volume

fractions. The functionally graded composite plates are designed as a homogeneous isotropic

graded layer between ceramic and metal phases. The volume fractions of the ceramic (c) and

metal (m) constituents of the plates obey the power law. Thus, the ceramic composition of the

lower plate changes from the ceramic-rich to the material-rich as

Vc(x, y) =

(

x

l

)n (

1 −
y

h

)m

(1)

whereas the ceramic composition of the upper plate changes from the metal-rich to the ceramic-

rich as

Vc(x, y) =

(

x

l

)n (

y

h

)m

(2)

where n is x- directional compositional gradient exponent, m is y- directional compositional

gradient exponent, h is the plate length and l is the plate width (Figure 1). The volume fraction

of the metal (m) of the plates changes as

Vm(x, y) = 1 − Vc(x, y) (3)

The mechanical properties of the FGM are based on the Mori-Tanaka relation [26]. The overall

bulk modulus

K (x, y) = Km +
Vc (Kc − Km)

1 + (1 − Vc)
3 (Kc − Km)

3Km + 4Gm

(4)

and the overall shear modulus G is

G (x, y) = Gm +
Vc (Gc −Gm)

1 + (1 − Vc)
Gc −Gm

Gm + f1

(5)

and where f1 is

f1 =
Gm (9Km + 8Gm)

6 (Km + 2Gm)
(6)

The overall modulus of elasticity

E (x, y) =
9KG

3K +G
(7)

The overall Poisson’s ratio is written as

ν (x, y) =
3K − 2G

2 (3K +G)
(8)

The coefficient of thermal expansion [27]

α (x, y) = αm + (αc − αm)
Kc (Km − K)

K (Km − Kc)
(9)

The coefficient of thermal conductivity [28]

λ (x, y) = λm + Vc (λc − λm)

(

1 + (1 − Vc)
λc − λm

3λm

)

(10)
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The specific heat capacity coefficient [28]

cp (x, y) = cpm
+ Vc

(

cpc
− cpm

)

(

1 + (1 − Vc)
cpc
− cpm

3cpm

)

(11)

Using the linear rule of mixtures the density can be written as

ρ (x, y) = ρcVc + ρmVm (12)

2.2. Heat Transfer Model

Transient three-dimensional heat conduction equation is

∇
∼

(

λ∇
∼

T

)

= ρcp

∂T

∂t
(13)

where λ is heat conductivity coefficient, ρ is density, cp is specific heat and ∇
∼

(del) operator. For

the two-dimensional (plane) case with dependency on the direction of material derivation

∂λ

∂x

∂T

∂x
+
∂λ

∂y

∂T

∂y
+ λ

(

∂2T

∂x2
+
∂2T

∂y2

)

= ρcp

∂T

∂t
(14)

The forward and central-difference equations can be applied to the first and second-order deriva-

tives of the temperature T (x, y, t) at the nodal point (i, j) with the coordinate (x, y) or with respect

to time t and the space variables (x, y). Similarly, the first order derivatives of the heat conduc-

tivity coefficient λ = λ(x, y) with respect to the space variables (x, y) can be written using the

forward- and backward-difference equations. Consequently, the heat transfer equation (14) can

be written in terms of difference equations as

T k+1
i, j =T k

i, j +
∆t

(ρcp)i, j(∆x)2

(

λi+1, j − λi, j

) (

T k
i+1, j − T k

i, j

)

+
∆t

(ρcp)i, j(∆y)2

(

λi, j+1 − λi, j

) 1

∆y

(

T k
i, j+1 − T k

i, j

)

+ (rx)i, j

(

T k
i+1, j − 2T k

i, j + T k
i−1, j

)

+ (ry)i, j

(

T k
i, j+1 − 2T k

i, j + T k
i, j−1

)

(15)

where

ai, j =
λ

ρcp

∣

∣

∣

∣

∣

∣

i, j

, (rx)i, j =
∆t

∆x
ai, j, (ry)i, j =

∆t

∆y
ai, j (16)

where ∆x, ∆y and ∆t are space and time increments, respectively. All physical and thermal

properties in the coefficients (16) are considered for the present material at the grid point (i, j).

2.3. Implementation of Initial and Boundary Conditions

The initial temperature distribution is given as

T (x, y) = 298 K at t = 0 (17)

and the thermal boundary conditions are given as

q(x, 2h + ha, t) = qo (18)
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where ha is adhesive thickness, q is a heat flux along the coordinate y respectively, and qo = 70

kW/m2. The other edges are subjected to adiabatic conditions (Figure 1). The finite difference

method requires that the plates be divided into a mesh of nx times ny divisions along the coor-

dinates x and y, respectively. The implementation of the boundary conditions require the heat

transfer equations to be written in terms of the heat flux along the bonded-plate edges. Thus,

the difference equations can be written as along the edge AB (i = 1, x = 0) of the bonded plates

T k+1
i, j = T k

i, j + 2 (rx)i, j

(

T k
i+1, j − T k

i, j

)

+
(

ry

)

i, j

(

T k
i, j+1 − T k

i, j

)

+
(

ry

)

i, j

(

T k
i, j−1 − T k

i, j

)

(19)

along the edge CD (i = nx, x = l) of the bonded plates

T k+1
i, j = T k

i, j + 2 (rx)i, j

(

T k
i−1, j − T k

i, j

)

+
(

ry

)

i, j

(

T k
i, j+1 − T k

i, j

)

+
(

ry

)

i, j

(

T k
i, j−1 − T k

i, j

)

(20)

along the edge AC ( j = 1, y = 0) of the bonded plates as

T k+1
i, j = T k

i, j + 2
(

ry

)

i, j

(

T k
i, j+1 − T k

i, j

)

+ (rx)i, j

(

T k
i+1, j − T k

i, j

)

+ (rx)i, j

(

T k
i−1, j − T k

i, j

)

(21)

along the edge BD ( j = ny, y = 2h + ha) of the bonded plates

T k+1
i, j =T k

i, j + 2
(

ry

)

i, j

(

T k
i, j−1 − T k

i, j

)

+ (rx)i, j

(

T k
i+1, j − T k

i, j

)

+ (rx)i, j

(

T k
i−1, j − T k

i, j

)

+ 2qo

(rry

λ

)

i, j

(22)

at the corner A (i = 1, j = 1), (x = 0, y = 0)

T k+1
i, j = T k

i, j + 2 (rx)i, j (T k
i+1, j − T k

i, j) + 2
(

ry

)

i, j

(

T k
i, j+1 − T k

i, j

)

(23)

at the corner B (i = 1, j = ny), (x = 0, y = 2h + ha)

T k+1
i, j = T k

i, j + 2 (rx)i, j

(

T k
i+1, j − T k

i, j

)

+ 2
(

ry

)

i, j

(

T k
i, j−1 − T k

i, j

)

+ 2qo

(rry

λ

)

i, j
(24)

at the corner C (i = nx, j = 1), (x = l, y = 0)

T k+1
i, j = T k

i, j + 2 (rx)i, j

(

T k
i−1, j − T k

i, j

)

+ 2
(

ry

)

i, j

(

T k
i, j+1 − T k

i. j

)

(25)

at the corner D (i = nx, j = ny), (x = l, y = 2h + ha)

T k+1
i, j = T k

i, j + 2 (rx)i, j

(

T k
i−1, j − T k

i, j

)

+ 2
(

ry

)

i, j

(

T k
i, j−1 − T k

i, j

)

+ 2qo

(rry

λ

)

i, j
(26)

where

(rry)i, j =
∆t

∆y
ai, j (27)

Now, the temperatures for the next time step t + ∆t from temperatures at the time t can be

calculated explicitly using equation (15) at the internal points and equations (19)-(26) at the

boundary points along the plate edges and at the corners.
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2.4. Elasticity Equations

The stress-strain equations are

σi j = 2µei j + λδi jev − δi, j (3λ + 2µ)α (∆T ) (28)

where δi, j is kronecker’s delta, α is coefficient of thermal expansion, ∆T is temperature change

and Lamé’s constants are

λ =
νE

(1 + ν) (1 − 2ν)
(29)

µ =
E

2 (1 + ν)
(30)

ν = ν(x1, x2) and E = E(x1, x2) are the Poisson’s ratio and the modulus of elasticity of the

material, respectively, and the volumetric strain is

ev = enn = e11 + e22 + e33 (31)

The strain-displacement equations are

ei j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

(32)

The equilibrium equations are
∂σi j

∂x j

+ Fi = 0 (33)

This equations can be reduced to three equations in terms of displacement components by sub-

stituting (28) - (32) into (33), and we obtain Navier’s equations of elasticity as

∂

∂x j

(

2µei j + λδi jev − δi, j (3λ + 2µ)α (∆T )
)

+ Fi = 0 (34)

For two-dimensional elasticity problems let x = x1 and y = x2 and u = u1(x1, x2), v = u2(x1, x2),

with µ = µ(x, y), λ = λ(x, y) and α = α(x, y), the elasticity equations (34) in terms of the

displacements in the absence of the body forces (Fi = 0) can be written explicitly as

2
∂µ

∂x

∂u

∂x
+
∂µ

∂y

(

∂u

∂y
+
∂v

∂x

)

+
∂λ

∂x

(

∂u

∂x
+
∂v

∂y

)

+ (λ + 2µ)
∂2u

∂x2
+ (λ + µ)

∂2v

∂y∂x
+ µ

∂2u

∂y2
− 3αT̄

∂λ

∂x

−2αT̄
∂µ

∂x
− (3λ + 2µ) T̄

∂α

∂x
− (3λ + 2µ)α

∂T̄

∂x
= 0

(35)

2
∂µ

∂y

∂v

∂y
+
∂µ

∂x

(

∂v

∂x
+
∂u

∂y

)

+
∂λ

∂y

(

∂u

∂x
+
∂v

∂y

)

+ (λ + 2µ)
∂2v

∂y2
+ (λ + µ)

∂2u

∂x∂y
+ µ

∂2v

∂x2
− 3αT̄

∂λ

∂y

−2αT̄
∂µ

∂y
− (3λ + 2µ) T̄

∂α

∂y
− (3λ + 2µ)α

∂T̄

∂y
= 0

(36)
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where T f = 298 K and T̄ = ∆T (x, y) = T (x, y) − T f .

The adhesive layer is homogeneous and the material constants are not function of spatial coor-

dinates (x, y), consequently their coordinate derivatives become zero. The elasticity equations

(35 and 36) in terms of displacement components become

(λ + 2µ)
∂2u

∂x2
+ (λ + µ)

∂2v

∂y∂x
+ µ

∂2u

∂y2
− (3λ + 2µ)α

∂T̄

∂x
= 0 (37)

(λ + 2µ)
∂2v

∂y2
+ (λ + µ)

∂2u

∂x∂y
+ µ

∂2v

∂x2
− (3λ + 2µ)α

∂T̄

∂y
= 0 (38)

The first- and second-order derivatives of displacement components u(x, y) and v(x, y) with

respect to space variables (x, y), and the first-order derivatives of the material constants and

temperature difference can be expressed using the suitable central, backward or forward differ-

ence equations for the internal points of the plate. Therefore, the elasticity equations in terms

of displacements can be written as

2
µi+1, j − µi, j

∆x

(ui+1, j − ui, j

∆x

)

+
µi, j+1 − µi, j

∆y

(

ui, j+1 − ui, j

∆y
+

vi+1, j − vi, j

∆x

)

+
λi+1, j − λi, j

∆x

(

ui+1, j − ui, j

∆x
+

vi, j+1 − vi, j

∆y

)

+ (λ + 2µ)
ui+1, j − 2ui, j + ui−1, j

(∆x)2

+ (λ + µ)
vi+1, j+1 − vi+1, j − vi, j+1 + vi, j

∆y∆x
+ µ

ui, j+1 − 2ui, j + ui, j−1

(∆y)2
− 3αT̄

λi+1, j − λi, j

∆x

−2αT̄
µi+1, j − µi, j

∆x
− (3λ + 2µ) T̄

αi+1, j − αi, j

∆x
− (3λ + 2µ)α

T̄i+1, j − T̄i, j

∆x
= 0

(39)

and

2
µi, j+1 − µi, j

∆y

(

vi, j+1 − vi, j

∆y

)

+
µi+1, j − µi, j

∆x

(

vi+1, j − vi, j

∆x
+

ui, j+1 − ui, j

∆y

)

+
λi, j+1 − λi, j

∆y

(

ui+1, j − ui, j

∆x
+

vi, j+1 − vi, j

∆y

)

+ (λ + 2µ)
vi, j+1 − 2vi, j + vi, j−1

(∆y)2

+ (λ + µ)
ui+1, j+1 − ui+1, j − ui, j+1 + ui, j

∆x∆y
+ µ

vi+1, j − 2vi, j + vi−1, j

(∆x)2
− 3αT̄

λi, j+1 − λi, j

∆y

−2αT̄
µi, j+1 − µi, j

∆y
− (3λ + 2µ) T̄

αi, j+1 − αi, j

∆y
− (3λ + 2µ)α

T̄i, j+1 − T̄i, j

∆y
= 0

(40)

For the adhesive layer, the discretizated elasticity equations can be written as

(λ + 2µ)
ui+1, j − 2ui, j + ui−1, j

(∆x)2
+ (λ + µ)

vi+1, j+1 − vi+1, j − vi, j+1 + vi, j

∆y∆x

+µ
ui, j+1 − 2ui, j + ui, j−1

(∆y)2
− (3λ + 2µ)α

T̄i+1, j − T̄i, j

∆x
= 0

(41)

and

(λ + 2µ)
vi, j+1 − 2vi, j + vi, j−1

(∆y)2
+ (λ + µ)

ui+1, j+1 − ui+1, j − ui, j+1 + ui, j

∆x∆y

+µ
vi+1, j − 2vi, j + vi−1, j

(∆x)2
− (3λ + 2µ)α

T̄i, j+1 − T̄i, j

∆y
= 0

(42)
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2.5. Implementation of Boundary Conditions

All four edges of the bonded plates are clamped as

u(x, y) = 0 (43)

v(x, y) = 0 (44)

These boundary conditions can be implemented using each of backward- or central- difference

schemes. Let one of the displacement components u(x, y) and v(x, y) be represented ψ = ψ(x, y),

the difference equations of their partial derivatives with respect to the space variables x and y at

the grid nodes along the four edges can be written as

∂ψ

∂x
=

ψi, j − ψi−1, j

∆x
(45)

∂ψ

∂y
=

ψi, j − ψi, j−1

∆y
(46)

∂2ψ

∂x2
=
−ψi+3, j + 4ψi+2, j − 5ψi+1, j + 2ψi, j

(∆x)2
(47)

∂2ψ

∂x2
=
−ψi−3, j + 4ψi−2, j − 5ψi−1, j + 2ψi, j

(∆x)2
(48)

∂2ψ

∂y2
=
−ψi, j+3 + 4ψi, j+2 − 5ψi, j+1 + 2ψi, j

(∆y)2
(49)

∂2ψ

∂y2
=
−ψi, j−3 + 4ψi, j−2 − 5ψi, j−1 + 2ψi, j

(∆y)2
(50)

∂2ψ

∂x∂y
=

ψi+1, j+1 − ψi+1, j − ψi, j+1 + ψi, j

∆x∆y
(51)

∂2ψ

∂x∂y
=

ψi, j+1 − ψi, j − ψi−1, j+1 + ψi−1, j

∆x∆y
(52)

∂2ψ

∂x∂y
=

ψi, j − ψi, j−1 − ψi−1, j + ψi−1, j−1

∆x∆y
(53)

∂2ψ

∂x∂y
=

ψi+1, j − ψi+1, j−1 − ψi, j + ψi, j−1

∆x∆y
(54)

Let φ = φ(x, y) to be the temperature change T̄ or one of material properties (λ, µ, α). The

backward-difference equations of their first order derivatives at the node (i, j) with respect to

the space variables (x, y)

∂φ

∂x
=
φi, j − φi−1, j

∆x
(55)

∂φ

∂y
=
φi, j − φi, j−1

∆y
(56)

Navier’s equations (35) and (36) can be reduced to a system of linear equations in terms of two

displacement components by substituting equations (41)-(42) at the internal points as well as

equations (45)-(56) at the boundary points.
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The system of linear equations can be resolved into the form [C]{u} = [B]. The sparse matrix

of coefficients is singular; consequently, the system of linear equations can be solved for the

displacement components using the pseudo singular value methods. The explicit difference

equations of the thermal analysis and the implicit difference equations of the stress analysis are

coded, solved and post-processed graphically in MATLAB mathematical software [29].

3. Results

In this study the thermoelastic stress analysis of adhesively bonded bi-directional functionally

graded plates was carried out based on two-dimensional elasticity equations. The functionally

graded plates have a width of h = 48 mm, a length of l = 100 mm and a thickness of t = 1

mm, respectively. The adhesive thickness is taken as ta = 4 mm. The property distribution of

the ceramic and metal composition is designed in the plate plane rather than through the plate

thickness (Figure 1). The in-plane material composition obeys the composition variation rule

defined by equations (1 and 2). Thus, the edges of the lower and upper plates contacting with

the adhesive layer are pure metal whereas their other edges AC and BD are pure ceramic. The

mechanical and physical properties of the ceramic and metal constituents and epoxy adhesive

are given in Table 1. A constant in-plane heat flux q (t) = 70 kW/m2 was applied along the pure

ceramic edge BD of the upper plate whereas an adiabatic condition is assumed for other edges.

The compositional gradient exponents n and m are related to the composition variations in the

x and y−directions, respectively, and considered as 0.1, 0.2 and 0.3. The initial temperature

distributions is assumed to be uniform in the plates and in the adhesive layer at a temperature

of 298 K. The plate edges are clamped applying u (x, y) = 0 and v (x, y) = 0. The thermal

analysis was ended when the temperature at a grid point in the adhesive layer having coordinates

(x = l
2
, y = h + ta

2
) reached a temperature of 393 K. After the thermal analysis was completed

the temperature distribution at the final time step was used in the thermal stress analysis. The

different in-plane material composition variations, and the space derivatives of the mechanical

properties of the material composition were considered and their effects on the equivalent strain

and stress in-plane distributions were investigated.

Figure 2 shows the effect of compositional gradient exponents (n) and (m) in the x− and y−

directions on the equivalent strain εeqv (x, y) distributions in the upper functionally graded plate

based on the thermal stress analyses by/without considering the spatial coordinate derivations of

the material constants (λ, µ, α). Each of the compositional gradient exponents (n) and (m) is kept

constant at a value of 0.1, respectively and the other exponent is changed as 0.1, 0.2 and 0.3 in

order to determine the effect of the active compositional gradient exponent. In case the gradient

exponent m = 0.1 indicating the composition variation along the y−direction the equivalent

strain εeqv (x, y) distributions are similar for the gradient exponent values (n = 0.1, 0.2, 0.3)

indicating the composition variation along the x−direction. The middle region of the pure-

ceramic edge, the left and right edges of the pure-metal region bonded to the adhesive layer

experience high strain levels (5 − 7 × 10−4) whereas the middle region undergoes negligible

equivalent strains. The consideration of the material derivatives indicates a decrease in the peak

equivalent levels (from 7 to 5.8 × 10−4) and a narrow peak strain region along the pure ceramic

edge as the gradient exponent n is increased. The analyses without the material derivations

predict higher equivalent strain levels (9 × 10−4) and a larger high strain region around the

pure ceramic edge. Negligible differences are observed for strain distributions and levels as the

composition gradient n is increased. The analysis with material derivatives (MDRV) predicts
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that as the heat flux is applied in the y-direction an effective composition variation along the

x-direction reduces peak strain levels, but the analysis without material derivatives (NMDRV)

predicts almost similar distributions and levels. In case the gradient exponent n = 0.1 indicating

the composition variation along the x−direction the equivalent strain distributions are similar

for the gradient exponent values (m = 0.1, 0.2, 0.3) indicating the composition variation along

the y−direction. The analysis (MDRV) indicates a narrower region having lower strain levels

than those of the analysis (NMDRV). However, the composition variation along the y-direction

has negligible effect, and the analysis indicates increases in the peak strain levels.

Figure 3 shows the effects of the compositional gradient exponents and the consideration of

material derivations on the equivalent stress σeqv (x, y) distributions. The gradient exponent n,

as m = 0.1 is constant, changes the ceramic composition; therefore, the high stress regions

exhibit different distributions concentrating around the pure ceramic plate corner and the size of

these regions get narrower. However, the peak stress levels are affected negligibly. The analysis

(MDRV) predicts larger high stress regions than those of the analysis (NMDRV). In case the

gradient exponent m changes as n = 0.1 is constant the similar stress distributions are observed

and the peak stress levels remain same. However, the high stresses concentrate around the pure

ceramic corner of the plate and a narrower and region near the ceramic rich edge of the plate.

Therefore, both the gradient exponents can be adjusted in order to control the size of high stress

regions, but the peak stress levels.

The effects of the compositional gradient exponents and the consideration of material deriva-

tions on the equivalent strain εeqv (x, y) distributions are shown in Figure 4. In general the

adhesive layer is assumed to be a weak member of the adhesive joints. The free edges of the

adhesive layer undergo higher strains whereas the most region of the adhesive layer still expe-

riences negligible strain levels. The analysis (MDRV) predicts high strains at the free edges of

the adhesive layer but peak strain levels appearing around the free edges of the adhesive-upper

plate interface. However, the analysis (NMDRV) indicates high strains in a larger region with

uniform width at the free edges of the adhesive layer. Increasing the gradient exponent n as

m = 0.1 results in decreases in the peak strain levels (8.2 to 6.8 × 10−4, MDRV) whereas the

analysis (NMDRV) shows negligible changes in the peak strain levels. In case the gradient

exponent m changes as n = 0.1 the strain distributions and levels are similar, and the analysis

(MDRV) indicates decreases in the strain levels with increasing gradient exponent m whereas

the analysis (NMDRV) implies increases in strain levels. Increasing the compositional gradient

exponent n in the x-direction is more effective on reducing peak adhesive strains.

Figure 5 shows the equivalent stress σeqv (x, y) distributions in the adhesive layer for different

compositional gradient exponents based on both analyses (MDRV and NMDRV). The equiva-

lent stresses distribute at the levels of 24.5-27 MPa and the analysis (MDRV) indicates a large

region having high stress levels between the upper plate-adhesive interface and the lower plate-

adhesive interface from the right free edges of the adhesive layer. In case m = 0.1 increasing the

gradient exponent n in the x-direction results in small decreases at stress levels but reduces con-

siderably the size of the region elapsed by high stresses. The analysis (MDRV) predicts larger

size of high stress region whereas the analysis predicts a very thin strip region with high stress

levels. In case n = 0.1 increasing the gradient exponent m in the y-direction results in a similar

effect of reducing the stress levels in the adhesive layer. The analysis (NMDRV) indicates lower

stress levels in a thin region around the right free edge of the adhesive layer.
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Figure 6 shows the effects of the compositional gradient exponents (n,m) on the equivalent

strain εeqv (x, y) distributions in the lower functionally graded plate based on both analyses

(MDRV,NMDRV). The equivalent strain concentrates in vicinities of the lower plate-adhesive

interface, and becomes peak at the left and right free ends of this interface. The remaining

regions of the plate experiences negligible strain levels which are lower than those in the upper

functionally graded plate (Figure 2). The analysis (NMDRV) predicts large strain concentration

regions around the left and right free ends of the plate-adhesive interface, and the strain levels

are nearly twice those predicted by the analysis (MDRV). The analysis (MDRV) aslo indicates

that increasing the gradient exponent (n) in the y-direction as m = 0.1 results in decreases in the

strain levels, however increasing the gradient exponent (m) in the x-direction as n = 0.1 results

in a contrary effect, thus, increases the strain levels.

The equivalent stress σeqv (x, y) distributions are critical around the plate-adhesive interface and

especially in the vicinities of the right free edge of the interface (Figure 7). The stress levels are

between 150-380 MPa and are lower than those in the upper functionally graded plate (Figure

3). The analysis (NMDRV) predicts a large region of high stress levels and higher stresses

than the analysis (MDRV). The size of the high stress regions remains almost same (NMDRV)

whereas increasing gradient exponent (n) in the x-coordinate, while (m = 0.1), results in smaller

high stress regions (MDRV). In addition, increasing gradient exponent (m) in the y-coordinate,

while (n = 0.1), results in larger high stress regions (MDRV) by reducing the stress levels.

However, the size of high stress regions is not affected with increasing gradient exponent m

(NMDRV).

Figures 8 and 9 show the effects of the compositional gradient exponents (n,m) on the equiva-

lent stressσeqv (x, y) and the equivalent strain εeqv (x, y) variations along the upper plate-adhesive

interface, the mid-line of the adhesive layer, and the lower plate-adhesive interface, respectively

based on the analyses MDRV and NMDRV. The peak adhesive stresses appear near the right

free edge of the adhesive layer (Figure 8). Increasing the gradient exponent (n) for m = 0.1 re-

duces the equivalent stresses and changes the stress variation profiles. The analyses MDRV and

NMDRV predict different stress variations but the stress levels are slightly higher for MDRV.

However, increasing the gradient exponent (m) for n = 0.1 does not provide decreases in the

stress levels, on the contrary they are slightly increased with increasing gradient exponent m. A

small benefit for adhesive stresses is gained by controlling the material composition variation

of the bonded functionally graded plates. However, it is still possible to reduce thermal stresses

in the adhesive layer. The equivalent strain is very low in the middle of the adhesive layer,

increases towards both free edges of the adhesive layer and becomes peak. The peak equivalent

strains at the right free edge of the adhesive layer are higher (Figure 9). The upper interface

experiences higher strain levels whereas the lowest strains are observed along the lower inter-

face. The analysis (MDRV) indicates decreases at the equivalent strain levels in the middle of

the adhesive layer as the gradient exponent n is increased for a constant m = 0.1. However, the

analysis (MDRV) predicts a smooth strain variation along the overlap region which becomes

minimum in the middle of adhesive layer and peak at both free edges of the adhesive layer, and

any change in the strain levels are not observed with increasing the gradient exponent n. Similar

results are observed in case the gradient exponent m is increased for a constant n = 0.1, but the

strain levels are slightly increased in the middle of the adhesive layer whereas the peak strain

levels are not affected.

11



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

Figures 10 and 11 show the effects of the compositional gradient exponents (n,m) on the equiv-

alent stress σeqv (x, y) and the equivalent strain εeqv (x, y) variations along the left edge, the mid-

line and the right edge of the adhesively bonded functionally graded plates, respectively based

on the analyses MDRV and NMDRV. The lower stresses occur along the left edge and increase

towards the right edge (Figure 10). Increasing the gradient exponent n for m = 0.1 results

in small decreases in the stress levels. The mechanical properties of the functionally graded

plates and the adhesive layer play important role on the stress variations. Thus, the adhesive

layer experiences lowest stress levels in comparison with those in the plates due to their elastic

properties of the local material distribution. Both analyses predict similar stress variations, but

the stress levels are predicted higher by the analysis (NMDRV). Similar stress variations are

observed as the gradient exponent m is increased for n = 0.1 by both analyses (MDRV, NM-

DRV). Increasing the gradient exponent m provides small decreases along the right edge of the

joint, but it causes small increases along the left edge and the mid-line of the joint. The analy-

sis (NMDRV) still predicts stresses higher than the analysis (MDRV). The stress discontinuity

along the plate-adhesive interfaces are still present due to the different mechanical properties

at both sides of the interfaces. The adhesive layer experiences largest equivalent strains. The

left and right-edges of the joint undergo negligible strain levels which are increasing towards

the adhesive layer. This is a natural result of the thermal-expansion mismatches between the

adhesive and material compositions at both sides of the interfaces. Both analyses predict differ-

ent equivalent strain variations. However, the strains are lowest at both the left and right edges

and highest in the middle of joint based on both analyses. The analysis (NMDRV) gives higher

strains. Increasing the gradient exponent n for m = 0.1 results in small decreases whereas the

gradient exponent m exhibits a contrary effect.

4. Conclusions

The thermal stress analyses of adhesively bonded in-plane clamped functionally graded joints

were carried out by considering the coordinate derivatives of material properties. The analysis

with material derivatives indicated lower stress and strain levels in the functionally graded plates

and in the adhesive joints. The strain distributions were completely affected by the material

derivatives whereas the stress distributions remain similar but the size of the high stress regions

reduced. The adhesive layer is most critical member of adhesive joint since it experiences

considerable strains due to thermal mismatches of the adhesive and material composition at

both side of the adhesive interface. The study showed that the consideration of the material

derivatives were necessary to predict correctly the actual stress and strain distributions.
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Property Unit Ni Al203 Adhesive

Density, ρ kg/m3 8880 3960 1640

Thermal conductivity, k W/m-K 60.5 × 10−3 46 × 10−3 8.1 × 10−3

Specific heat capacity, cp W-h/kg-K 0.11 0.21 0.16

Shear modulus, G GPa 76 150 1.638

Bulk modulus, K GPa 180 172 4.574

Coefficient of thermal expansion, α 1/◦C 6.6 × 10−6 8.1 × 10−6 40.47 × 10−6

Table 1. Thermal, physical and mechanical properties of metal (Ni), ceramic (Al203) and adhesive.

Figure 1. Boundary conditions and geometry of adhesively bonded functionally graded plates.
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Figure 2. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent strain εeqv (x, y)×10−4 distributions in the upper plate based

on the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 3. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent stress σeqv (x, y) distributions in the upper plate based on

the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 4. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent strain εeqv (x, y) × 10−4 distributions in the adhesive layer

based on the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 5. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent stress σeqv (x, y) distributions in the adhesive layer based

on the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 6. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent strain εeqv (x, y)× 10−4 distributions in the lower plate based

on the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 7. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent stress σeqv (x, y) × 10−4 distributions in the lower plate

based on the analyses with/without material derivation (apsis : x, (mm) and ordinate : y, (mm)).
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Figure 8. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent stress σeqv (x, y) distributions along the upper plate-adhesive

interface, adhesive mid-line and the lower plate-adhesive interface based on the analyses with/without material derivation (apsis : x, (mm) and ordinate : σeqv, (MPa)).
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Figure 9. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent strain εeqv (x, y) × 10−4 distributions along the upper

plate-adhesive interface, adhesive mid-line and the lower plate-adhesive interface based on the analyses with/without material derivation (apsis : x, (mm) and ordinate : εeqv).
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Figure 10. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent stress σeqv (x, y) distributions at the left-free edge, in the

mid-line and at the right-free edge of the adhesive joint based on the analyses with/without material derivation (apsis : y, (mm) and ordinate : σeqv, (MPa)).
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Figure 11. Effect of the compositional gradient exponents (n) and (m) in the x− and y−directions on the equivalent strain εeqv (x, y) × 10−4 variations at the left-free edge, in

the mid-line and at the right-free edge of the adhesive joint based on the analyses with/without material derivation (apsis : y, (mm) and ordinate : εeqv).
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