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Abstract

Ceramic matrix composites (CMC) such as SC fiber reinforced SC ceramic matrix
composites (SC/SC) are improved in toughness through various mechanisms such as fiber
bridging, fiber breakage, pullout, interfacial debonding and matrix crack deflection. To
analyze the stress distribution of such damages, in this study, a new finite element model is
proposed, in which the effect of Coulomb friction at the interface after fiber breaking or
matrix cracking followed by the fiber/matrix debonding is taken into account. The accuracy of
the model was validated by comparing with the general-purpose finite element analysis
software and theoretical matrix crack model. As a result, the stress distributions behaved
non-linearly in the interfacial debonding area, and the present model showed a good
agreement with the conventional FEM and theoretical model.

1. Introduction

Ceramics are excellent in heat, abrasion and domosesistances, but their strength
reliability for structural materials is not enoudhe to their brittle nature. On the other hand,
ceramic matrix composites (CMCs) reinforced withrapeic fibers attract attention as a
damage tolerating material, because CMCs are inggran toughness through various
mechanisms such as fiber bridging, fiber breakpg#out, interfacial debonding and matrix
crack deflection[1]. Thus, the mechanical behaeib€MCs including such damages should
deeply be clarified with engineering significance.

In this study, a new finite element model for themdge analysis of this material is
proposed, in which the effect of Coulomb frictionthe interface after fiber breaking or
matrix cracking followed by the fiber/matrix debangl is taken into account. Although a
limitation condition is incorporated into the mod#ie advantage of this model is such that
stress and strain distributions can be obtaineghénely one calculation without iteration. The
accuracy of the present model was validated by eomg with the results of both the
general-purpose finite element analysis softwackthaoretical matrix crack model.
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2. Finite element model and method
2.1 Siffness equation including contact forces

Once a fiber is broken, matrix cracking or interdé debonding occurs in a CMC
material, and then the whole stiffness of the nialtes reduced, resulting in a non-linear
behavior in the stress-strain relation. For thelyai of this phenomenon, a new method of
coordinates updating can be incorporated into tieeipusly proposed analysis updatikg
matrix at damage occurrence [1, 2]. In the new oubththe solution is calculated as
‘incremental’ displacement because the boundarglitions of displacement are given onto
the updated coordinates from the previous stateshit situation, the principle of virtual
work including contact forces is given as an inaatal form, as follows:

[[[, 40,a¢,av —U”Vélﬁdzluidv +[] Afd’duids)—”cdlfidduidszo (1)

whereagij, &j, P, andu; are components of stress, strain, body force apladement in an

elastic body, respectivelyl; and F, are surface and contact forces, respectively dititian,

A means the increment of each quanti@yis a contact surface ar§ is a mechanical
boundary excep€. The subscripts andj represent and z-direction, and represents the
amount of variation. By discretizing Eq. (1) andicieg the equivalent nodal force on nodes
of each element, the stiffness equation includmgtact force increment4Q} can be derived
as shown in Eq. (2)

(K} 2y = {4} +{4Q} 2)

where K] is the global stiffness matrix derived from thestf term of Eq. (1), {lu} is the
nodal displacement incremenf} is the load increment deriving from 2nd and 3eds of
Eq. (1), and {IQ} is treated as an unknown variable vector.

2.2. Definition of interfacial contact states and conditions

Interfacial damage in the vicinity of the breakipgint (i.e. matrix crack or fiber
breakage) of CMC is considered to be formed asvall First, interfacial debonding occurs
from bonding state which is mechanically balancgdcondly, interfacial slipping occurs.
And finally, the interface becomes a mechanicayabced state again through interfacial
friction. Accordingly, we assume interfacial cortatates as (a) bonding, (b) interfacial shear
debonding, (c) interfacial shear debonding withrmatrack, (d) interfacial shear debonding
with fiber breakage, and (e) interfacial re-bondwigh friction using the multi-node model
between the fiber and matrix, under axisymmetriedition. Figure 1 shows the schematic of
such states, where nodes 1 & 3 belong to the gbEment, and nodes 2 & 4 belong to the
matrix one. Several interfacial contact conditians given as Egs. (3)-(7):

(a) Bonding

When the interface is bonded without debonding ragmigure 1(a), the continuities of
displacement and the force balances are given as:

Au, = Au, = Au, = Au,, Aw, = Aw, = Aw, = Aw,

3
AR + AR, + AR, + AR, = 0,AR + AR, + AR, + AR, =0 )

2
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Where,4u and Aw are displacement increments alongnd z-directions.4R and 4R are
contact force increments alon@ndz-directions of nodes 1 to 4.

(b) Interfacial shear debonding

When the interface is debonded, and slipped alpwiyection as in Figure 1(b), the
continuities of displacement and the force balamcegiven as:

Au, = Au, = Au, = Au,, 4w, = 4w, , 4w, = Aw,
AR+ AR, = (AR + AR,), AR, + AR, = (4R, + 4R,) (4)
(AR, + 4R;) + (4R, + 4R,) = 0, (4R +4R;) + (4R, + 4R,) =0

Where,u is a coefficient of static friction.

(c) Interfacial shear debonding with matrix crack

When the matrix elements are separated by matagkcand the interface is debonded and
slipped alongz-direction as in Figure 1(c), the continuities o$placement and the force
balances are given as:

Au, = Au, = Au, = Au,, 4w, = Aw,
AR, = ifR,, IR, = iR, AR, + 2R, = 0, AR + 4R, =0 (5)
(4R +2R,)+ (4R, + 4R,) = 0, (AR + R, +(4R, - AR,) =0

(d) Interfacial shear debonding with fiber breakage

When the fiber elements are separated by fiberkbggaand the interface is debonded and
slipped alongz-direction as in Figure 1(d), the continuities a$pdacement and the force
balances are given as:

Au, = Au, = Au, = Au,, 4w, = Aw,
AR, = pAR, AR, = PR, AR, + 4R, = 0, 4R, + AR, = 0 (6)
(4R +4R,) +(4R, + 4R,) = 0, (AR - AR,) + (4R, + AR,) = 0

(e) Interfacial re-bonding with friction

Although the quadruple nodes was debonded anddséifegz-direction, these are re-bonded
with friction as in Figure 1(e). Then, the contimest of displacement and the force balances
are given as:

Au, = Au, = Auy = Au,, A, = (2,1 2,) A, Ay = (2,1 2,) Ay, A, = (2, 1 2,) Awy, @)
AR +4AR, + AR, + 4R, =0, AR + 4R, + AR, + 4R, =0

Where,z (i=1...4) is updated-direction coordinates of nodes 1 to 4.

2.3. Insertion of the interfacial contact conditions into the stiffness equation

By inserting the interfacial contact conditionskafs. (3)-(7) into the stiffness equation
(Eqg. (2)), the interfacial contact stiffness equai®given as:

[K J4u} ={4f) (8)
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Where, K] is the partly changed stiffness matrix by interdé contact conditions, of which
the detail is shown in the reference [1, 2], arid ] is the nodal displacement vector contains
nodal contact force (e.gR and4R’). From Eq. (8), {lu;} can be calculated by the Gaussian
elimination, and the nodal displacememu} can be obtained by the continuities of
displacement as in Eq. (3)-(7).

IAu L AR, Ay AR, I 4 K I
'"
Awy, AR}, fow, AR, i ARI ART AR+ I Aw, . AR,
TIT Aw, AR¢IA Al&_\u_.‘ AR_, Aug AR T
Auy , AR, Au,, AR, o — - T . ) 4M4:AR4
ERT Sy -opeoo TR
Auy AR 1 ¢I¢ 2 Ay AR, % - . ART —AR; +AR, — AR+ AR; H lTAwhARZ SRS i. 3 Ay AR,
oo 23 R £1
Aw, AR,l wy . RY . = P HR ?" 2— . — Awy, AR !A‘\P3=AR;
Ay A Ay
Fber Matrx r Fiber Matnx Fiber M.lal.rix 1 Fiber Matnx Fiber Matnx
(a) (b) (c) (d) (e)

Figure 1. Interfacial contact states (a) Bonding, (b) Iraeidl shear debonding, (c) Interfacial shear deimond
with matrix crack, (d) Interfacial shear debondwith fiber breakage and (e) Interfacial re-bondivith friction.

2.4. Element and boundary conditions

In many papers [3-7], it is reported that the ifateial debonding of CMC occurs with
a quite large scale, and results in relaxatiortress concentration around the matrix cracks or
fiber breaks. Accordingly, we assumed that thectffef stress concentration around broken
fibers and mutual interference between the fibeesregligible. In this study, we used an
axisymmetric model in which a single fibas=0.0055 mm) is embedded in a cylindrical
matrix fm=0.011 mm) as shown in Figure 2. And the boundandtions are given by; 1
axis direction fixation az=0, and 2) load boundary conditiadP=rr>4c at the top of the
model.

AP=rr2de
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symmetry
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B 8> (b)Interfacial
— shear debonding
b > > :
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Z shear debonding
_ with matrix crack
>
x z
) 002 _
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- R Aia Interface r

|<>|<>]
0.0055 0.0055

Figure 2. Present finite element model.

3. Theoretical matrix crack model

According to the papers [8-11], temperature charageses thermal strain in CMC, and
clamping stress occurs in the interface betweeflilblee and matrix. Chiang [8] proposed the
theoretical matrix crack model considering suchrrtfeg strain, in the state that interfacial
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debondingLy occurs around the matrix crack (see, Figure 3tofding to the paper, the
axial stresses of the fiber, and matrixom, and the interfacial shear stregs the interfacial
debonding (& z=Ly) region given as:

o av (0—5) A
o)== 1-e) ©)
Vf Vf (O’Vf + Wm)
av.\o-0
o.(2)= lo-0) i-e) (10)
Vm(avf +Wm)
r-Adav.\c-o
Ti (Z) — f f ( ) e—/iz (11)
2vf (avf +Wm)
On the other hand, the stresses in the interfaciadling ¢>Ly) region are given as:
g av, (0-_5) “JL -p(z-Lg)/r
o.()=|—- l-e™|-0 e Tt o 12
@ {Vf Vv e () 12)

v, V. Vi (av, +w,)

m

O_m(z) :i—yﬂi g _ an (0-_5) (1_e—)lLd )_Uf (oo):|e_p(Z—Ld)/rf +Jf (00)} (13)

_p g _ O'Vf(O'—ﬁ) Y| 00 -p(z-Lg) /¢
ri(z)—E{I VAEORTTN i-e’)-0,( )}e (14)

And, the stresses along theand§-axes of the fiber and matrix are given as:

avf af (Z) - |/ma-m(z) _

(0,); =(0,); :1+vm+2y+a(1—vf)_q°(z) (15)

(@) =1 /1) -1y (2) (16)

(@) =[=(rn /) ~1j0s(2) (17)

Where,

__Viq [

o= 1+v, +2y+a'(1—vf)] (18)
av,

(af _am)EmEfAT

q = (19)
(1+Vm)Ef + (1_Vf)Em

/]:2_’1'1/(:2_’[1 an+Wm (20)
r re 1+v, +2y+al-v,)

7, ()= 1= 2k o (21)

Vila +y-2«(av, +w,)]
7, () = 2 P 2y) (22)

Voo a+y-2«(av, +mw,)

m
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26, (@+y-2«@v, +w, )]

_ (23)

E.In(R/r;)
In(R/r,) =-[2Inv, +v, 3-v,)]/av,?) (24)
a=E,IE, (25)
y=V, IV, (26)

whereE is a Young's modulus, is a Poisson's ratie, is a thermal expansion coefficients,

iIs a volume fractionr is a radius an@(«) is an axial stress in the bonding region. The
subscriptsf and m, represent fiber and matrix, respectively. Furntiane, o/V; is the fiber
stress at matrix crack surface=0Q), AT is temperature change; and do(2) are clamping
stresses by thermal strain and Poisson’s effeds the coefficient of static friction, and
(r<R<ry) is the matrix effective radius (the matrix axi@hd to be concentrated Rt, and
the shear stress carries in the regigre = R). Chiang [8] said that the clamping stresses
are caused by thermal strain and Poisson’s effetlieainterface between fiber/matrix (i.e.
when the thermal expansian<anm,, the clamping stress by thermal strain is comjpoass
stressgi>0 ), and thus nonlinear stress distributions appeiaterfacial debonding region.

T

o
2

( am

l Matrix 4—2/_‘/ — [y

M~ T
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Figure 3. Theoretical matrix crack model [8].

4. Simulation results of the present finite element model and comparison with
theoretical model and general-purpose finite element analysis

The results from present finite element model geteral-purpose finite element analysis
software ANSYSare shown in Figures 4 and 5, and the correspgntliroretical curves
obtained from theoretical model are shown in Figbrdn this simulation, the debonding
length is assigned ds=1.0 mm, Young’s modulug; = E,=200 GPa, Poisson’s ratig =
vm=0.2, coefficient of static frictiop=0.05, and no thermal stress occurs €= 0 K and
g=0 MPa), for convenience.

According to the present finite element modsl, recovers gradually from matrix
crack surfacez=0), while ot shows the peak &=0 (see, Figure 4(a)). This is because the
matrix in the vicinity of the crack surface doed deform so much, so that the fiber has to
sustain almost all the load. On the other hand,ntia¢rix can deform approaching to the
debonding tip through frictional force, and as suiethe matrix stress increases. It should be
noted that the stresses are changed suddenly ant#réacial debondig tipzELy). In the
interfacial bonding regiong; andoy, are both constant, ang, oy are both zero (see, Figure
4(b)). This is attributed to the same elastic camst of the fiber and matrix. In the interfacial
debonding region, on the other hand, hgtandosy indicate a nonlinear distribution, aagdon
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the matrix acts as a compression stress aloagis. This is because the fiber and matrix have
different strains along-axis, as mentioned above. And it causes a chanBeisson’s effect,
and leads to strain difference alongxis. As a result, the stress distributions arngled at
each position along-axis. It is found in Figure 4(b) that the streseéshe outside matrix
elements =0.0064) are smaller than inside matrix elememnt.0101). In the general-
purpose finite element analysis, the results agpproximately with the distributions
calculated by the present finite element model,(Bagire 5). A slight difference is attributed
to the different analysis algorithm of the interéd@contact problem in the present model and
ANSYS. In the theoretical model [8], the stressehdate a nonlinear distribution (see, Figure
6(a)), and boths, of the fiber and matrix are in good agreements Mite present finite
element model results. On the other handndoyare also relatively good agreements about
fiber stress, although slight differences are seethe matrix stress (see, Figure 6(b)).

1.2 0.15
2 a (o= (o ok
g 1 g 0.1r / (o )m(r=0.0064)
7 o (0 )m(r=0.0083)
308 05 %)ma:o.own
}—é 0.6 Té 0} ¥
‘S 0.4 go.os \\( o 4)m(r=0.0101)
02 0.1k (o »)m(r=0.0083)
’ : \( 2)m(r=0.0064)
0 1 1 1 1 0'15 1 1 1 1
0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5
Distance from matrix crack, mm Distance from matrix crack, mm
(@) (b)

Figure 4. Stress distribution by present finite element nho@g along the- axis, (b) along the- andg- axes.
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Figureb. Stress distribution by general-purpose finite @rtranalysis software ANSYS. (a) along thaxis,
(b) along the- andf- axes
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Figure 6. Stress distribution by theoretical matrix crackd®lo (a) along the axis, (b) along the- andf-axes
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5. Conclusion

A new finite element model for the fiber/matrix entacial debonding and sliding was
proposed. The accuracy of this model was validet@dmparison with the results of both the
general-purpose finite element analysis softwar&SXN and theoretical matrix crack model.

The present finite element model results showed tha fiber and matrix stress
distributions behaved non-linearly in the interédalebonding area, while these displayed a
constant in the bonding area. And, this model alsowed a good compatibility with the
general-purpose finite element analysis and theatemodel. Thus, it is expected that this
model can be applied for damage states such agnhpbone matrix crack but also multiple
fracture, fiber breakage and matrix crack deflectiodeed difficult through the conventional
theoretical models or general-purpose finite elédraealysis.
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