
ECCM16 - 16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

1 
 

 
 

VERIFICATION OF UTILITY OF FINITE ELEMENT MODEL FOR 
MICROSCOPIC DAMAGE SIMULATION OF A FIBER-REINFORCED 

CERAMIC MATRIX COMPOSITE 
 
 

R. KITAMURAa* and K. GODAb 

 
a Graduate School of Science and Engineering, Yamaguchi University, Ube, Japan 
b Department of Mechanical Engineering, Yamaguchi University, Ube, Japan 
*s006wc@yamaguchi-u.ac.jp 

 
Keywords: CMC (Ceramic Matrix Composites), Matrix crack, Interfacial debonding, FEM 
(Finite Element Method) 
 
 
Abstract 
Ceramic matrix composites (CMC) such as SiC fiber reinforced SiC ceramic matrix 
composites (SiC/SiC) are improved in toughness through various mechanisms such as fiber 
bridging, fiber breakage, pullout, interfacial debonding and matrix crack deflection. To 
analyze the stress distribution of such damages, in this study, a new finite element model is 
proposed, in which the effect of Coulomb friction at the interface after fiber breaking or 
matrix cracking followed by the fiber/matrix debonding is taken into account. The accuracy of 
the model was validated by comparing with the general-purpose finite element analysis 
software and theoretical matrix crack model. As a result, the stress distributions behaved 
non-linearly in the interfacial debonding area, and the present model showed a good 
agreement with the conventional FEM and theoretical model. 

 
 

1. Introduction 
 

Ceramics are excellent in heat, abrasion and corrosion resistances, but their strength 
reliability for structural materials is not enough due to their brittle nature. On the other hand, 
ceramic matrix composites (CMCs) reinforced with ceramic fibers attract attention as a 
damage tolerating material, because CMCs are improved in toughness through various 
mechanisms such as fiber bridging, fiber breakage, pullout, interfacial debonding and matrix 
crack deflection[1]. Thus, the mechanical behavior of CMCs including such damages should 
deeply be clarified with engineering significance. 

In this study, a new finite element model for the damage analysis of this material is 
proposed, in which the effect of Coulomb friction at the interface after fiber breaking or 
matrix cracking followed by the fiber/matrix debonding is taken into account. Although a 
limitation condition is incorporated into the model, the advantage of this model is such that 
stress and strain distributions can be obtained by merely one calculation without iteration. The 
accuracy of the present model was validated by comparing with the results of both the 
general-purpose finite element analysis software and theoretical matrix crack model. 
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2. Finite element model and method 
 
2.1 Stiffness equation including contact forces 
 
 Once a fiber is broken, matrix cracking or interfacial debonding occurs in a CMC 
material, and then the whole stiffness of the material is reduced, resulting in a non-linear 
behavior in the stress-strain relation. For the analysis of this phenomenon, a new method of 
coordinates updating can be incorporated into the previously proposed analysis updating K 
matrix at damage occurrence [1, 2]. In the new method, the solution is calculated as 
‘incremental’ displacement because the boundary conditions of displacement are given onto 
the updated coordinates from the previous states. In this situation, the principle of virtual 
work including contact forces is given as an incremental form, as follows: 
 

0=−




 +− ∫∫∫∫∫ ∫∫∫∫∫ C iiV S iiV iiijij dSuFdSuTdVupdV ∆δ∆∆δ∆∆δ∆ε∆δσ∆

σ
  (1) 

 
where σij, εij, ip  and ui are components of stress, strain, body force and displacement in an 

elastic body, respectively. iT and iF  are surface and contact forces, respectively. In addition, 

∆ means the increment of each quantity. C is a contact surface and Sσ is a mechanical 
boundary except C. The subscripts i and j represent r and z-direction, and δ represents the 
amount of variation. By discretizing Eq. (1) and defining the equivalent nodal force on nodes 
of each element, the stiffness equation including contact force increment {∆Q} can be derived 
as shown in Eq. (2) 
 

[ ] }{}{}{ QfuK ∆∆∆ +=         (2) 
 
where [K] is the global stiffness matrix derived from the first term of Eq. (1), {∆u} is the 
nodal displacement increment, {∆f} is the load increment deriving from 2nd and 3rd terms of 
Eq. (1), and {∆Q} is treated as an unknown variable vector. 
 
2.2. Definition of interfacial contact states and conditions 
 

Interfacial damage in the vicinity of the breaking point (i.e. matrix crack or fiber 
breakage) of CMC is considered to be formed as follows: First, interfacial debonding occurs 
from bonding state which is mechanically balanced. Secondly, interfacial slipping occurs. 
And finally, the interface becomes a mechanically balanced state again through interfacial 
friction. Accordingly, we assume interfacial contact states as (a) bonding, (b) interfacial shear 
debonding, (c) interfacial shear debonding with matrix crack, (d) interfacial shear debonding 
with fiber breakage, and (e) interfacial re-bonding with friction using the multi-node model 
between the fiber and matrix, under axisymmetric condition. Figure 1 shows the schematic of 
such states, where nodes 1 & 3 belong to the fiber element, and nodes 2 & 4 belong to the 
matrix one. Several interfacial contact conditions are given as Eqs. (3)-(7): 
 
(a) Bonding 
When the interface is bonded without debonding as in Figure 1(a), the continuities of 
displacement and the force balances are given as:  
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Where, ∆u and ∆w are displacement increments along r and z-directions. ∆R and ∆R’ are 
contact force increments along r and z-directions of nodes 1 to 4. 
(b) Interfacial shear debonding 
When the interface is debonded, and slipped along z-direction as in Figure 1(b), the 
continuities of displacement and the force balances are given as: 
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Where, µ is a coefficient of static friction. 
(c) Interfacial shear debonding with matrix crack 
When the matrix elements are separated by matrix crack and the interface is debonded and 
slipped along z-direction as in Figure 1(c), the continuities of displacement and the force 
balances are given as: 
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(d) Interfacial shear debonding with fiber breakage 
When the fiber elements are separated by fiber breakage and the interface is debonded and 
slipped along z-direction as in Figure 1(d), the continuities of displacement and the force 
balances are given as: 
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(e) Interfacial re-bonding with friction 
Although the quadruple nodes was debonded and sliped along z-direction, these are re-bonded 
with friction as in Figure 1(e). Then, the continuities of displacement and the force balances 
are given as: 
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Where, zi (i=1…4) is updated z-direction coordinates of nodes 1 to 4. 
 
2.3. Insertion of the interfacial contact conditions into the stiffness equation 
 

By inserting the interfacial contact conditions of Eqs. (3)-(7) into the stiffness equation 
(Eq. (2)), the interfacial contact stiffness equation is given as: 
 

[ ] }{}{ fuK cc ∆∆ =          (8) 
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Where, [Kc] is the partly changed stiffness matrix by interfacial contact conditions, of which 
the detail is shown in the reference [1, 2], and {∆uc} is the nodal displacement vector contains 
nodal contact force (e.g. ∆R and ∆R’). From Eq. (8), {∆uc} can be calculated by the Gaussian 
elimination, and the nodal displacement {∆u} can be obtained by the continuities of 
displacement as in Eq. (3)-(7).  
 

 
(a)               (b)              (c)             (d)               (e) 

Figure 1. Interfacial contact states (a) Bonding, (b) Interfacial shear debonding, (c) Interfacial shear debonding 

with matrix crack, (d) Interfacial shear debonding with fiber breakage and (e) Interfacial re-bonding with friction. 

 

2.4. Element and boundary conditions 
 

In many papers [3-7], it is reported that the interfacial debonding of CMC occurs with 
a quite large scale, and results in relaxation of stress concentration around the matrix cracks or 
fiber breaks. Accordingly, we assumed that the effects of stress concentration around broken 
fibers and mutual interference between the fibers are negligible. In this study, we used an 
axisymmetric model in which a single fiber (rf=0.0055 mm) is embedded in a cylindrical 
matrix (rm=0.011 mm) as shown in Figure 2. And the boundary conditions are given by; 1) z-
axis direction fixation at z=0, and 2) load boundary condition ∆P=πrm

2∆σ at the top of the 
model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Present finite element model. 
 
3. Theoretical matrix crack model 
 
 According to the papers [8-11], temperature change causes thermal strain in CMC, and 
clamping stress occurs in the interface between the fiber and matrix. Chiang [8] proposed the 
theoretical matrix crack model considering such thermal strain, in the state that interfacial 
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debonding Ld occurs around the matrix crack (see, Figure 3). According to the paper, the z-
axial stresses of the fiber, σf and matrix, σm, and the interfacial shear stress τi in the interfacial 
debonding (0≦z≦Ld) region given as:  
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On the other hand, the stresses in the interfacial bonding (z>Ld) region are given as: 
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And, the stresses along the r- and θ-axes of the fiber and matrix are given as: 
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where E is a Young's modulus, ν is a Poisson's ratio, α is a thermal expansion coefficients, V 
is a  volume fraction, r is a radius and σ(∞) is an axial stress in the bonding region. The 
subscripts, f and m, represent fiber and matrix, respectively. Furthermore, σ/Vf is the fiber 
stress at matrix crack surface (z=0), ∆T is temperature change, qi and q0(z) are clamping 
stresses by  thermal strain and Poisson’s effect,  µ is the coefficient of static friction, and R  
(rf< R <rm) is the matrix effective radius (the matrix axial load to be concentrated at R , and 
the shear stress carries in the region  rf≦r≦ R ). Chiang [8] said that the clamping stresses 
are caused by thermal strain and Poisson’s effect at the interface between fiber/matrix (i.e. 
when the thermal expansion αf<αm, the clamping stress by thermal strain is compression 
stress; qi>0 ), and thus nonlinear stress distributions appear in interfacial debonding region. 
 

                       

Figure 3. Theoretical matrix crack model [8]. 
 
4. Simulation results of the present finite element model and comparison with 
theoretical model and general-purpose finite element analysis 
 

The results from present finite element model and general-purpose finite element analysis 
software ANSYS are shown in Figures 4 and 5, and the corresponding theoretical curves 
obtained from theoretical model are shown in Figure 6. In this simulation, the debonding 
length is assigned as Ld=1.0 mm, Young’s modulus Ef = Em=200 GPa, Poisson’s ratio νf = 
νm=0.2, coefficient of static friction µ=0.05, and no thermal stress occurs (i.e. ∆T = 0 K and 
qi=0 MPa), for convenience. 

According to the present finite element model, σm recovers gradually from matrix 
crack surface (z=0), while σf shows the peak at z=0 (see, Figure 4(a)). This is because the 
matrix in the vicinity of the crack surface does not deform so much, so that the fiber has to 
sustain almost all the load. On the other hand, the matrix can deform approaching to the 
debonding tip through frictional force, and as a result the matrix stress increases. It should be 
noted that the stresses are changed suddenly at the interfacial debondig tip (z=Ld). In the 
interfacial bonding region, σf and σm are both constant, and σr, σθ are both zero (see, Figure 
4(b)). This is attributed to the same elastic constants of the fiber and matrix. In the interfacial 
debonding region, on the other hand, both σr and σθ indicate a nonlinear distribution, and σr on 
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the matrix acts as a compression stress along r- axis. This is because the fiber and matrix have 
different strains along z-axis, as mentioned above. And it causes a change in Poisson’s effect, 
and leads to strain difference along r-axis. As a result, the stress distributions are changed at 
each position along r-axis. It is found in Figure 4(b) that the stresses of the outside matrix 
elements (r=0.0064) are smaller than inside matrix elements (r=0.0101). In the general-
purpose finite element analysis, the results agree approximately with the distributions 
calculated by the present finite element model (see, Figure 5). A slight difference is attributed 
to the different analysis algorithm of the interfacial contact problem in the present model and 
ANSYS. In the theoretical model [8], the stresses indicate a nonlinear distribution (see, Figure 
6(a)), and both σz of the fiber and matrix are in good agreements with the present finite 
element model results. On the other hand, σr and σθ are also relatively good agreements about 
fiber stress, although slight differences are seen on the matrix stress (see, Figure 6(b)). 
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(a)                                                                         (b) 

Figure 4. Stress distribution by present finite element model. (a) along the z- axis, (b) along the r- and θ- axes. 
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(a)                                                                         (b) 

Figure 5. Stress distribution by general-purpose finite element analysis software ANSYS. (a) along the z- axis, 
(b) along the r- and θ- axes 
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(a)                                                                         (b) 

Figure 6. Stress distribution by theoretical matrix crack model. (a) along the z- axis, (b) along the r- and θ-axes 
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5. Conclusion 
 

A new finite element model for the fiber/matrix interfacial debonding and sliding was 
proposed. The accuracy of this model was validated in comparison with the results of both the 
general-purpose finite element analysis software ANSYS and theoretical matrix crack model.  

The present finite element model results showed that the fiber and matrix stress 
distributions behaved non-linearly in the interfacial debonding area, while these displayed a 
constant in the bonding area. And, this model also showed a good compatibility with the 
general-purpose finite element analysis and theoretical model. Thus, it is expected that this 
model can be applied for damage states such as not only one matrix crack but also multiple 
fracture, fiber breakage and matrix crack deflection, indeed difficult through the conventional 
theoretical models or general-purpose finite element analysis. 
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