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Abstract 
The honeycomb sandwich plates are widely used in the automotive, aeronautic and aerospace 
industries. However, the numerical modeling of honeycomb structures is too tedious and time 
consuming. The homogenization of these structures allows obtaining an equivalent 
homogenized solid and making very efficient simulations. In the present study, the skin effect 
is taken into consideration for the extension problems of honeycomb sandwich plates in which 
the two skins are much more rigid than the honeycomb core. An analytic homogenization 
method based on the beam and plate theories is proposed to determine the upper and lower 
bounds of the equivalent elastic properties, and to study the influence of the honeycomb 
height on these properties. A very good agreement has been achieved between the results of 
the present H-model and 3D FE modeling. 

 
 

1. Introduction 
 

The honeycomb sandwich plates are widely used in the automotive, aeronautic and aerospace 
industries. The simulation and optimization of this kind of plates are of prime importance for 
the lightness and safety of composite structures. However, the numerical modeling of 
honeycomb structures is too tedious and time consuming. The homogenization of these 
structures allows obtaining an equivalent homogeneous solid and making the simulations 
much more efficient.  
 
Many studies have been performed on the analytical homogenization of honeycomb 
structures. The book of Gibson and Ashby [1] is the first systematic literature in this field. 
The in-plane elastic properties of honeycomb were first obtained with the beam theory. 
Further refinements have been attempted by Masters and Evans [2] considering stretching and 
hinging effects. However, all these mathematical models on honeycomb cores are based on 
pure cellular structures without considering the strengthening effect of the skin faces. In the 
classical sandwich theory [3], the global skin-core interaction is identified as the result of the 
anti-plane core assumption. Since the constraints of two skin faces significantly alter the local 
deformation mechanism of the core, the homogenized core properties become sensitive to the 
ratio of the core thickness over the unit cell size, which is called thickness effect by Becker 
[4]. 
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An interesting approach was proposed by Xu et al. [5] to homogenize a honeycomb unit cell 
including skin effect. Firstly, the homogenization was carried out along X-direction (Fig. 1) to 
obtain 2 types of solids corresponding to inclined and vertical walls; then a second 
homogenization was carried out along Y-direction to obtain the whole homogenous solid. 
Based on the asymptotic expansions and characteristic periodicity, the displacement functions 
between the 2 types of solids were formulated and analytically resolved. However, the 
interactions between the two homogenized solids were not equivalent to those between the 
vertical and inclined walls; furthermore the Poisson coefficients were not treated together 
with the tensile moduli, leading to some notable errors.  
 
In the present study, we limit ourselves to the extension problems of honeycomb sandwich 
plates in which the two skins are much more rigid than the honeycomb core. Thus, we can 
assume that: 1) the core has little influence on the skin’s behavior, and its deformation is 
constrained by the two skins; 2) for a honeycomb in thin walls, the tensile rigidities are 
essentially given by the core’s paper stretching instead of its bending. In a representative unit 
cell, two analytical homogenization models based on the beam and plate theories are 
established to determine the upper and lower bounds of the elastic properties of the equivalent 
solid. An analytical homogenization model based on the plate theory and trigonometric 
function series is proposed to study the influence of the honeycomb height on its elastic 
properties. The coupling of the tensile moduli and Poisson coefficients is considered to study 
the behavior interactions in two directions. A very good agreement has been achieved 
between our H-model and 3D FE modeling results. 
 
2. Formulation of the homogenization for in-plane tensile properties 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Honeycomb REV and its stretching behavior on 1/8 REV 
 
A honeycomb cell (Fig. 1) is taken as Representative Elementary Volume (REV). In the 
classical homogenization theory [1], the tensile properties are determined only on a cell 
without the skin effect, and the properties depend only on the bending behavior of the thin 
walls of the honeycomb. In the present study, the skins are supposed very rigid, so the 
honeycomb walls are constrained by the skins, the thin wall stretching effect is dominant with 
respect to its bending effect. Consequently, the tensile moduli of the honeycomb cell are rather 
proportional to t/l (Fig. 1), instead of (t/l)3. Taking t = 0.19 mm and l = 8 mm as example, the 
tensile moduli with the skin effect are 591 times of those without skin effect! The stretching 
behavior of the honeycomb under a tensile load in Y-direction is shown in Fig. 1.  
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2.1 Determination of the upper bounds of the tensile properties 
 
When the honeycomb height is very small, one can suppose that all material points on the 
honeycomb walls behave as the points on the skins, so have the same constant strains (Fig. 1): 
 

         Yε  (given strain)        ;       = −X S Yε ν ε      ;      ( )2 2sin cos= − =l S Y Yε θ ν θ ε αε   (1) 

 
where νS is the skin’s Poisson coefficient, lε is the normal strain in the inclined walls. 

     
The above assumption allows one to determine the upper bounds of the tensile modulus. 
Considering the membrane behavior of the honeycomb walls in Fig. 1, the internal strain 
energy is expressed as follows by using local references: 
 

        ( ) ( )2 2 2 2
int 2 2

1 1
2 2

2 1 2 1
= + + + + +

− −x y x y x l x l

E E
bth btlπ ε ε νε ε ε ε νε ε

ν ν
     with   =y Yε ε  (2) 

 

where E is the Young’s modulus of the honeycomb paper, ν is its Poisson coefficient,xε is the 
normal strain due to the Poisson effect and has the same value on the vertical and inclined 

walls due to the rigid skin effect. xε can be obtained by minimizing the strain energy, then the 

strain energy of the honeycomb (Eq. 2) can be calculated for a given Yε :  
 

           int 0
x

π
ε

∂ =
∂

      �       x Y

h l

h l

αε ν ε+= −
+

    �    intπ       (3) 

The strain energy for an extension along X-direction can be obtained in a similar manner. The 
tensile strain imposed in the X-direction involves the following strains in the vertical and 
inclined walls:  

          Xε  (given strain)     ;   = −Y S Xε ν ε   ;   ( )2 2sin cos /= − =l S Y Yε θ θ ν ε βε   (4) 

 
By using Eq. (4) and the same method, the strain energy of the honeycomb can be calculated 
for a given Xε . 

 
The equivalent homogenized solid of the honeycomb (indicated by *) can be considered as an 
orthotropic material, having the following elastic law: 

          
* * * * * *

* ** * * * * *

1

1
X X XY Y X X XY X

XY YXY YX X Y Y XY Y Y

E E Q Q

E E Q Q

σ ν ε ε
ν νσ ν ε ε

        
= =        −        

     with   
* *

* *
=X Y

XY YX

E E

ν ν
  (5) 

The above elastic matrix is symmetrical one, so only three parameters * * *,  ,  X Y XYQ Q Q  have to 

be determined. It is noted that in most honeycomb homogenization studies, the tensile moduli 
and Poisson coefficients were determined separately without respecting Eq. (5). 
 
The powerful energy method is used to determine these properties. The strain energy of the 
homogenized solid is defined as follows and should be equal to the strain energy of the real 
honeycomb: 
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( )

( )

* 2 * * * *
int

2 * * * *
int

1
2  

2

1 1
     2       with   = cos ( sin )

2 2

= + +

= + + = +

∫ X X X Y XY Y Y

V

X X X Y XY Y Y

Q Q Q dXdYdZ

Q Q Q V V bl h l

π ε ε ε ε

ε ε ε ε π θ θ
  (6) 

so       2 * * * *
int

2
2+ + =X X X Y XY Y YQ Q Q

V
ε ε ε ε π    (7) 

The three unknown parameters * * *,  ,  X Y XYQ Q Q need three equations like (7), which can be 

obtained by three numerical tests. For example, an extension along X (νS=0.3, ,   and X Y lε ε ε  

defined by Eqs 1-2), another along Y (νS=0.3, ,   and X Y lε ε ε  defined by Eq. 4) and the third 

along Y with ν=0. It is noted that the results do not depend on the choice of the three cases. 
 
Using the obtained * * *,  ,  X Y XYQ Q Q , one can calculate the Poisson coefficients and Young’s 

moduli as follows: 
 

          ( ) ( )
* *

* * * * * * * * * *
* *

    ;        ;    1     ;    1= = = − = −XY XY
YX XY X X XY YX Y Y XY YX

X Y

Q Q
E Q E Q

Q Q
ν ν ν ν ν ν       (8) 

 
2.2 Determination of the lower bounds of the tensile modulus 
 
When the honeycomb is very high, most material points on its walls behave as the points 
located at the mid-height (points A, C, E, G in Fig. 1), leading to a redistribution of the strains 
and stresses between the vertical and inclined walls. This case gives the lower bounds of the 
tensile moduli. It is noted that the skins only constrain the displacements of the honeycomb 
walls on the REV borders (Fig. 1, left). Grouping the two half vertical walls together for 
simplicity (Fig. 2), an imposed displacement V0 on the top of the 1/4 REV leads to the 
following deformations:  
 

           0 0 cos
     ;        ;    cos

sin sin
= = − = = −

+ +Y X S Y X S

V V l
U l

h l h l

θε ε ν ε ε θ ν
θ θ

  (9) 

 
 

  
Figure 2. Strain and stress redistribution between the vertical and inclined walls in 1/4 REV 
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It is supposed that the stress redistribution gives a constant vertical displacement V along the 
honeycomb height direction. Thus the strains on the vertical and inclined walls are given by: 
 

        ( ) ( )0

1 1
    ;    cos sinh lV V U V

h l
ε ε θ θ= − = +   (10) 

 

In the case of a very high honeycomb, the skin constraint effect on the Poisson behavior in the 
height direction is negligible, thus the strain energy is defined as follows: 
 

        ( )2 2
int

1

2 h lEbt h lπ ε ε= +     (11) 

 

The unknown displacement V in Eq. (10) is obtained by minimizing the strain energy; then the 
strain energy can be calculated: 
 

        int 0
V

π∂ =
∂

        ;        0
2

sin cos

sin

lV hU
V

h l

θ θ
θ

−=
+

     �    intπ   (12) 

For an extension along X-direction, a displacement U0 is imposed, leading to the following 
deformations:  
 

         
( )

0

sin
     ;        ;    

cos cos

+
= = − = −X Y S X S

U h lU
V

l l

θ
ε ε ν ε ν

θ θ
  (13) 

 

Thus we can use Eq. (13) and above method to calculate the strain energy. Finally, the lower 
bounds of the tensile moduli and the Poisson coefficients can be obtained by using the energy 
method described by Eqs (5-8). 
 
2.3 Honeycomb height effect on the tensile moduli and Poisson coefficients 
 
In §2.2, the honeycomb height is respectively supposed very small or very great to determine 
the upper and lower bounds of the tensile properties. Let us study now the Honeycomb height 
effect on the tensile moduli and Poisson coefficients, including the in plane shear strain 
contribution. 
 
1) On the upper vertical wall (h/2) 

The honeycomb height has a big influence on the tensile moduli and Poisson coefficients of 
the honeycomb. The points on the walls have not only the same displacements as the skins, but 
also some additional displacements which are supposed as follows in the local reference xy to 
satisfy the boundary conditions (Fig. 1, right):  
 

     
1

1

1
1

sin

2
cos (1 )

n

i
i

n

i
i

j x
u a

b

j x y
v b

b h

π

π
=

=

 =


 = −


∑

∑
        ;   2 1j i= −   (14) 

 
It is worth mentioning that the trigonometric functions in u1 can be replaced by a linear 
function (2a1x/b) in the case of tensile loading. Including the imposed constant skin’s strain 

Yε , the strains in the local reference xy  can be obtained as follows: 
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1

1

1

1

1 1

1

         cos

2
   cos

2
sin (1 ) 

=

=

=

 ∂= = ∂
 ∂= + = − ∂
 ∂ ∂= + = − −

∂ ∂

∑

∑

∑

n

x i
i

n

y Y Y i
i

n

xy i
i

u j j x
a

x b b

v j x
b

y h b

u v j j x y
b

y x b b h

π πε

πε ε ε

π πγ

  (15) 

  
Thus the strain energy in a vertical wall (h/2) int_hπ  is expressed as follows: 

 

( ) ( )/ 2 / 2 2 2 2
int_ 1 1 1 12 20 0

2 2
1 1

b h

h x y x y xy

Et Et
t Gt dydx A B C GtDπ ε ε νε ε γ ν

ν ν
 = + + + = + + + − − 

∫ ∫   (16) 

 

with   

( )

2 2
2 2 2

1 1
1 1 1

2 2
2

1 1
1 1

1
                      ;     2 ( 1)

8 4 2

1   ;     
2 4 24

= = =

= =

= = + − +

= − − − =

∑ ∑ ∑

∑ ∑

n n n
i

i Y Y i i
i i i

n n
i

i Y i i i
i i

j h bh b b
A a B b b

b j h

h j h j
C a a b D b

b

π ε ε
π

π πε
  (17) 

 
2) On 1/2 inclined wall (l/2) 

In the local reference of the inclined wall, the same additional displacements are observed 

(Fig.1, right, ' 'CC EE= −
uuuur uuuur

), which should be projected on the inclined wall plane. Thus the 
displacements and strains can be defined as follows: 
 

         
2

1

2
1

 sin  

2
sin cos (1 )

n

i
i

n

i
i

j x
u a

b

j x y
v b

b l

π

πθ

=

=

 =


 = − −


∑

∑
        ;            2 1j i= −   (18) 

 

        

2

1

2

1

2 2

1

          cos

2
    sin cos

2
sin sin (1 )

=

=

=

 ∂= = ∂
 ∂= + = + ∂
 ∂ ∂= + = − −

∂ ∂

∑

∑

∑

n

x i
i

n

y l l i
i

n

xy i
i

u j j x
a

x b b

v j x
b

y l b

u v j j x y
b

y x b b l

π πε

πε ε ε θ

π πγ θ

  (19) 

 
Consequently, the strain energy in the inclined wall int_ lπ  is given by: 

 

           ( )int_ 2 2 2 22
2

1l

Et
A B C GtDπ ν

ν
= + + +

−
    (20) 
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where   

( )

2 2
2 2 2 2

2 2
1 1 1

2 2
2 2

2 2
1 1

1
         ;         2 sin ( 1) sin

8 4 2

1 sin     ;    sin
2 4 24

= = =

= =

= = − − +

= − − + =

∑ ∑ ∑

∑ ∑

n n n
i

i l l i i
i i i

n n
i

i l i i i
i i

j l bl b b
A a B b b

b j l

h j l j
C a a b D b

b

π ε ε θ θ
π

π πε θ θ
(21) 

 
The minimization of the strain energy gives a linear equation system, thus one obtains the 
unknown parameters ia  and ib , and then the strain energy: 

 

          int_ int_ int_ int_( ) ( )
0     ;     0h l h l

i ia b

π π π π∂ + ∂ +
= =

∂ ∂
    �  ia  and ib   �   intπ   (17) 

 
For an extension along X-direction, one should just replace the Eq. (1) by (4). Three strain 
states are taken to establish three equations like Eq. (7) in order to calculate * * *,  ,  X Y XYQ Q Q  and 

* *,  XY YXν ν . 

 
3. Numerical validation 
 
The present H-models are validated by FE simulations using the thin shell element ‘S4R’ of 
Abaqus. The material and geometrical data are given as follows: for the skins, ES=10000 
MPa, tS=0.6 mm, νS=0.3; for the honeycomb paper, E=1500 MPa, t=0.19 mm, ν=0.3, 
h=l=4.62 mm, θ=30°.   
 
Since the tensile rigidities of the honeycomb are very small with respect to those of the skins, 
two simulations are carried out each time by using E1=1000 MPa and E2=2500 MPa for the 
honeycomb paper, then the strain energy is obtained by subtraction in order to accurately  
calculate the tensile properties. 
 
The tensile moduli * * *,  ,  X Y XYQ Q Q vs the honeycomb height are shown in Fig. 3, it is observed 

that the present analytical curves of the tensile moduli are very close to the numerical ones 
obtained by Abaqus. These curves are well situated between the upper and lower bounds. It is 
noted that the honeycomb height has a great influence on the tensile moduli: *XQ  decreases 

from 28 to 21.4 MPa and *YQ  decreases from 52 to 21.4 MPa. A very good agreement is also 

found for the Poisson coefficients * * and XY YXν ν  between the H-model and Abaqus (Fig. 4). 

 
It is also worth noting that when the honeycomb height increases, the three moduli 

* * *,  ,  X Y XYQ Q Q  decrease and converge to the same lower bounds (Fig. 3), and the Poisson 

coefficients increase and converge toward 1 (Fig. 4).  This means that there are strong 
interactions between both directions: an extension along a direction may induce considerable 
stresses in another direction, this needs much more energy so leads to a greater tensile 
modulus. Notable differences are found compared to the results obtained in [5], because the 
honeycomb was not treated as an entire 3D structure and the moduli * * * *,  ,  ,  X Y XY YXE E ν ν were 

calculated separately without considering their coupling effects in [5]. 
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Figure 3. Tensile moduli vs height (b=0-120 mm)     Figure 4. Poisson coefficients vs height (b=0-120 mm) 
 
 
 
4. Conclusions 
 
Analytical homogenization models of honeycomb sandwiches plates are developed based on 
the strain energy method. The skin effect and honeycomb height effect on the tensile modulus 
are investigated, leading to a great improvement compared to the classical homogenization 
models. The coupling effect between the Young’s moduli and Poisson coefficients is studied. 
The obtained homogenized tensile moduli and the Poisson coefficients are in very good 
agreement with those got from 3D FE simulations (Abaqus), and they are well situated 
between the upper and lower bounds. The present H-models are very easy to use and enable to 
largely reduce the CAD and mesh preparing work, the memory storage and the computation 
time.  
 
The future work will be carried out on the other stress states, such as the bending, in plan and 
transverse shearing, torsion, with the consideration of the skin effect, honeycomb height effect 
and coupling effect between the Young’s moduli and Poisson coefficients. 
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