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Abstract

The honeycomb sandwich plates are widely useckiaditomotive, aeronautic and aerospace
industries. However, the numerical modeling of lyaoenb structures is too tedious and time
consuming. The homogenization of these structud®vs obtaining an equivalent
homogenized solid and making very efficient sinutat In the present study, the skin effect
is taken into consideration for the extension peofs of honeycomb sandwich plates in which
the two skins are much more rigid than the honeycaore. An analytic homogenization
method based on the beam and plate theories isopeapto determine the upper and lower
bounds of the equivalent elastic properties, andstiady the influence of the honeycomb
height on these properties. A very good agreemasthieen achieved between the results of
the present H-model and 3D FE modeling.

1. Introduction

The honeycomb sandwich plates are widely useddratiomotive, aeronautic and aerospace
industries. The simulation and optimization of tkisd of plates are of prime importance for
the lightness and safety of composite structuresweéver, the numerical modeling of
honeycomb structures is too tedious and time comgunThe homogenization of these
structures allows obtaining an equivalent homogesesolid and making the simulations
much more efficient.

Many studies have been performed on the analytimahogenization of honeycomb
structures. The book of Gibson and Ashby [1] is fir& systematic literature in this field.
The in-plane elastic properties of honeycomb weérgt bbtained with the beam theory.
Further refinements have been attempted by Maatet€£vans [2] considering stretching and
hinging effects. However, all these mathematicablet® on honeycomb cores are based on
pure cellular structures without considering therggthening effect of the skin faces. In the
classical sandwich theory [3], the global skin-cimteraction is identified as the result of the
anti-plane core assumption. Since the constraintsaskin faces significantly alter the local
deformation mechanism of the core, the homogeripee properties become sensitive to the
ratio of the core thickness over the unit cell sizhich is called thickness effect by Becker

[4].
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An interesting approach was proposed byeXal. [5] to homogenize a honeycomb unit cell
including skin effect. Firstly, the homogenizatias carried out along-direction (Fig. 1) to
obtain 2 types of solids corresponding to inclinedd vertical walls; then a second
homogenization was carried out aloMglirection to obtain the whole homogenous solid.
Based on the asymptotic expansions and charaatgyaiodicity, the displacement functions
between the 2 types of solids were formulated amaly&ically resolved. However, the
interactions between the two homogenized solidevmat equivalent to those between the
vertical and inclined walls; furthermore the Poissmefficients were not treated together
with the tensile moduli, leading to some notableres

In the present study, we limit ourselves to theeegion problems of honeycomb sandwich
plates in which the two skins are much more rigndnt the honeycomb core. Thus, we can
assume that: 1) the core has little influence an gkin’s behavior, and its deformation is
constrained by the two skins; 2) for a honeycombhim walls, the tensile rigidities are
essentially given by the core’s paper stretchirsgeiad of its bending. In a representative unit
cell, two analytical homogenization models based tba beam and plate theories are
established to determine the upper and lower boahtte elastic properties of the equivalent
solid. An analytical homogenization model basedtba plate theory and trigonometric
function series is proposed to study the influenteéhe honeycomb height on its elastic
properties. The coupling of the tensile moduli &wdsson coefficients is considered to study
the behavior interactions in two directions. A veaggod agreement has been achieved
between our H-model and 3D FE modeling results.

2. Formulation of the homogenization for in-planetensile properties

— — — — — —

Figure 1. Honeycomb REV and its stretching behavior on 1/& RE

A honeycomb cell (Fig. 1) is taken as Represergailementary Volume (REV). In the

classical homogenization theory [1], the tensileperties are determined only on a cell
without the skin effect, and the properties depenlty on the bending behavior of the thin
walls of the honeycomb. In the present study, tkiessare supposed very rigid, so the
honeycomb walls are constrained by the skins,hiewvtall stretching effect is dominant with

respect to its bending effect. Consequently, thsile moduli of the honeycomb cell are rather
proportional tat/l (Fig. 1), instead oft{)3. Takingt = 0.19 mm and = 8 mm as example, the

tensile moduli with the skin effect are 591 timdghmse without skin effect! The stretching

behavior of the honeycomb under a tensile load-direction is shown in Fig. 1.

2
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2.1 Determination of the upper bounds of the tenmibperties

When the honeycomb height is very small, one capase that all material points on the
honeycomb walls behave as the points on the skmbkave the same constant strains (Fig. 1):

&, (given strain) L e =-VE, & :(sin2¢9—|/S cos 6) £, =ae, (1)

wherevsis the skin’s Poisson coefficierd, is the normal strain in the inclined walls.

The above assumption allows one to determine thperupounds of the tensile modulus.
Considering the membrane behavior of the honeycwralls in Fig. 1, the internal strain
energy is expressed as follows by using local esfess:

E
1-v?

E
1-v

1 1 :
=3 bth(fx2 +e&; +2V£X£y) T btl(£i+£|2 + 2/5;,) with &,=&, (2)

whereE is the Young’s modulus of the honeycomb papes, its Poisson coefficient, is the
normal strain due to the Poisson effect and hasdmnee value on the vertical and inclined

walls due to the rigid skin effecg, can be obtained by minimizing the strain energgntthe
strain energy of the honeycomb (Eq. 2) can be Gkt for a givere, :

Mo > g=vils > 7, )

X

The strain energy for an extension alofidirection can be obtained in a similar manner. The
tensile strain imposed in theé-direction involves the following strains in the weal and
inclined walls:

g, (givenstrain) ;& =-VeE, ; & =(sin26’— cos 8 A/S)EY = Be, (4)

By using Eq. (4) and the same method, the stragnggnof the honeycomb can be calculated
for a givene, .

The equivalent homogenized solid of the honeycamittidated by *) can be considered as an
orthotropic material, having the following elastev:

0-;( — 1 E*x V*XYEY Ex| _ Qx va € x ; E_;( _5
L (= —| . = with =% =—"(5)
UY 1_ I/XYVYX I/YXEQX EY 3 Y. Q XY Q Y. 2 I/XY I/YX
The above elastic matrix is symmetrical one, sy dnlee paramete®,, Q,, Q,, have to

be determined. It is noted that in most honeycomidgenization studies, the tensile moduli
and Poisson coefficients were determined separaiéhput respecting Eq. (5).

The powerful energy method is used to determinsetlpFoperties. The strain energy of the
homogenized solid is defined as follows and shdgdequal to the strain energy of the real
honeycomb:
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7 =% [(£Q, +26,6,0,+£,Q) dxddz

int
: (6)
:%(SiQ; + 2‘;:><“5.YQ*><\(+f%j\()V=7Tim with V %— bl co8 i+ | sié

. . . 2
SO £>2<Qx +2£x£YQXY+£YQY:v7Tim (7)

The three unknown paramete®;, Q,, Q,,need three equations like (7), which can be
obtained by three numerical tests. For examplexaension alonX (vs=0.3, &, &, andg,
defined by Egs 1-2), another aloNgvs=0.3, &,, & andeg, defined by Eq. 4) and the third
alongY with v=0. It is noted that the results do not depend erctivice of the three cases.

Using the obtaine®,, Q,, Q,,, one can calculate the Poisson coefficients andnyts
moduli as follows:

g % B =0 (g, EFQ{AV K ) ®

2.2 Determination of the lower bounds of the tensibdulus

When the honeycomb is very high, most material {goon its walls behave as the points
located at the mid-height (points &, E, Gin Fig. 1), leading to a redistribution of theastis
and stresses between the vertical and inclinedswéHis case gives the lower bounds of the
tensile moduli. It is noted that the skins only swain the displacements of the honeycomb
walls on the REV borders (Fig. 1, left). Groupiree ttwo half vertical walls together for
simplicity (Fig. 2), an imposed displacemewi on the top of the 1/4 REV leads to the
following deformations:

VO

£ = V| cos@
" h+lsing

*h+Isin@

(9)

E,=VgEg,  U=g] cof=-v

Figure 2. Strain and stress redistribution between the \adréind inclined walls in 1/4 REV
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It is supposed that the stress redistribution gavesnstant vertical displacemanalong the
honeycomb height direction. Thus the strains onvérécal and inclined walls are given by:

£, :%(VO—V) . £ :Tl(U cog+V sid) (10)
In the case of a very high honeycomb, the skin ttaimt effect on the Poisson behavior in the
height direction is negligible, thus the strainrgyds defined as follows:

N
I
N

Ebt(g2h+ 1) (11)

int

The unknown displacemeXtin Eq. (10) is obtained by minimizing the strameegy; then the
strain energy can be calculated:

V= IV, —hU sin8 cod >

| _ 12
P, hsinZ @+1 i (12)

For an extension along-direction, a displacemertd, is imposed, leading to the following
deformations:

U U(h+Isin@
; E=VEL VO=—|/S—(I o ) (13)

£
X | cos#

Thus we can use Eq. (13) and above method to eddctiie strain energy. Finally, the lower
bounds of the tensile moduli and the Poisson aoeffts can be obtained by using the energy
method described by Egs (5-8).

2.3Honeycomb height effect on the tensile moduli amidgen coefficients

In 82.2, the honeycomb height is respectively sspdovery small or very great to determine
the upper and lower bounds of the tensile propeertiet us study now the Honeycomb height
effect on the tensile moduli and Poisson coeffigemncluding the in plane shear strain
contribution.

1) On the upper vertical walhf2)

The honeycomb height has a big influence on thsileemoduli and Poisson coefficients of
the honeycomb. The points on the walls have not thrd same displacements as the skins, but
also some additional displacements which are swgapas follows in the local referenggto
satisfy the boundary conditions (Fig. 1, right):

W=y qsm%

. i L i=a-1 (14)
= hosi® (<Y

= b h

It is worth mentioning that the trigonometric fulocts in u; can be replaced by a linear
function Qa;x/b) in the case of tensile loading. Including the asg@d constant skin’s strain
&, , the strains in the local reference can be obtained as follows:
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oy, . jr TIX
E, =— = ~— Co
) ; % b b
E,=E& +% =¢ —Ei b.cosjﬂ (15)
o ay Y ohg b
oy, 2y
—A+—= b—sm 1-—
=%y ax Z:' b b h)

Thus the strain energy in a vertical walld) 7z, is expressed as follows:

., [br2phiz Et 5 ’ 5 B
T n —tJ'O J'O [1_1/2 (gx +ey +2vex£y)+thXy} dydx= 1

E(ArBr2 Qo (19

R RELES = Y00 (BT
with _ 17)
n i_ﬂ . :_n J
Cl—g —af( )-<;-abks D b;ﬁ >4

2) On 1/2 inclined walll(2)

In the local reference of the inclined wall, thengaadditional displacements are observed

(Fig.1, right, CC' = -EE'), which should be projected on the inclined watine. Thus the
displacements and strains can be defined as fallows

u, :z asin%

j=2-1 (18)
v, ——z bschos— (1—
i=1
g = —Zn: A7 cod ™
*oX i:181 b b
_ ov, _ 23 . jx
£,=6+—2 = ¢ +—Zh sing cos— (19)
oy = b
au oV, J 71X 2y
b S|n6?5| 1-—
v ay 0x Z b "¢ I )

Consequently, the strain energy in the inclined wg | is given by:

Et

i T (A, +B,+2vC,)+ GtD, (20)
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where = ) _ (@
& h T R i’
Cz—i=1 qu,( 1) + 2 sindab ; . snﬁHZ:l: o] >4

The minimization of the strain energy gives a lneguation system, thus one obtains the
unknown parameterg andb , and then the strain energy:

a(ni-nt_h + n;nt_l) — 0 . a(ITint_h |nt I)

=C > dh > 17
oa oh & andb Thi (17)

For an extension along-direction, one should just replace the Eq. (1)(4)y Three strain
states are taken to establish three equation€liké7) in order to calculat®;, Q,, Q,, and

I/XY’ VYX'
3. Numerical validation

The present H-models are validated by FE simulatiasing the thin shell elemei@4R’ of
Abaqus. The material and geometrical data are gaeerfiollows: for the skinsEs=10000
MPa, ts=0.6 mm, vs=0.3; for the honeycomb papeE=1500 MPa,t=0.19 mm, v=0.3,
h=1=4.62 mm,&=30°.

Since the tensile rigidities of the honeycomb agy\small with respect to those of the skins,
two simulations are carried out each time by ustfgl000 MPa ande,=2500 MPa for the
honeycomb paper, then the strain energy is obtaiyedubtraction in order to accurately
calculate the tensile properties.

The tensile modul,, Q,, Q,,vs the honeycomb height are shown in Fig. 3, dkserved

that the present analytical curves of the tensiteluti are very close to the numerical ones
obtained by Abaqus. These curves are well situbgddeen the upper and lower bounds. It is

noted that the honeycomb height has a great infien the tensile modul®; decreases
from 28 to 21.4 MPa an®, decreases from 52 to 21.4 MPa. A very good agraemealso
found for the Poisson coefficients, andv., between the H-model and Abaqus (Fig. 4).

It is also worth noting that when the honeycombghtiincreases, the three moduli
Qy, Q,, Q,, decrease and converge to the same lower bounds 3Fi and the Poisson

coefficients increase and converge toward 1 (Fig. Fhis means that there are strong
interactions between both directions: an extensiong a direction may induce considerable
stresses in another direction, this needs much mosrgy so leads to a greater tensile
modulus. Notable differences are found comparethéoresults obtained in [5], because the
honeycomb was not treated as an entire 3D struetadethe modulg, , E,, V,,, V were

calculated separately without considering theirmpdiog effects in [5].
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Figure 3. Tensile moduli vs height (b=0-120 mm) Figure 4. Poisson coefficients vs height (b=0-120 mm)

4. Conclusions

Analytical homogenization models of honeycomb sanbdes plates are developed based on
the strain energy method. The skin effect and hooreyp height effect on the tensile modulus
are investigated, leading to a great improvemempared to the classical homogenization
models. The coupling effect between the Young’s aticahd Poisson coefficients is studied.
The obtained homogenized tensile moduli and thesdeaoi coefficients are in very good
agreement with those got from 3D FE simulations gdus), and they are well situated
between the upper and lower bounds. The presenbétels are very easy to use and enable to
largely reduce the CAD and mesh preparing work,nieenory storage and the computation
time.

The future work will be carried out on the otheess states, such as the bending, in plan and
transverse shearing, torsion, with the considemasicthe skin effect, honeycomb height effect
and coupling effect between the Young’'s moduli Bagsson coefficients.
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