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Abstract  

In this paper the constitutive compressive behaviour of nearly parallel spread-tow textile 

reinforcement is studied. The striking result of our analysis is that the spread-tow type of 

reinforcement should obey linear relation between force and deformation. This is in contrast 

to standard textile reinforcements that obey a power-law type of behaviour. To support the 

theoretical investigation we have developed an test rig who's chief purpose is to achieve 

compression between nearly perfectly parallel surfaces. This is achieved using a mechanical 

arrangement consisting of a ball-joint.  

 

 

1. Introduction  

 

Presently, the aerospace industry is looking into spread-tow textile reinforcement for use in 

primary structural composites. This is mainly due to their relatively low price and improved 

mechanical performance, hand ability and manufacturability. As introduction of new 

structural composite materials into aero structures requires a timely and costly certification 

process, there is presently a large effort towards characterisation, understanding and 

modelling various aspects of the spread-tow based composite materials. Since forming of 

reinforcements plays a key role in terms of the subsequent composite manufacturing and the 

performance of the final product, we focus in this contribution on the elastic compression of 

such a preform.  

 

Since, the mechanical properties of a fibre mass are important in many fields of engineering, 

including composite manufacturing, a significant effort has been spent to describe and model 

these properties. In particular, Van Wyk [1] pioneered the mechanistic analysis of the 

compressibility of 3D random fibre masses. Van Wyk regarded the fibre mass as a system of 

bending units consisting of fibre beam elements between adjacent fibre contacts and he 

ignored twisting, slip, and extension of the fibres. His key assumptions were that the mean 

contact spacing is proportional to the reciprocal of the fibre volume fraction and that the 

segments deform as in bending of straight slender beams. The result of his analysis is a simple 

power law for the compressive stress as 
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where k is a structure dependent constant; E is the Young’s modulus of the fibres; and 0  is 

the limiting fibre volume fraction below which P=0. Most of the work following van Wyk has 

accepted the form Eq. 1 and focused on finding an appropriate expression for k by extending 

the theories describing the structure development during deformation. It was not until 1998 

that Toll [2] suggested a more general expression for the packing of fibre masses 

 

  nnEkP 0  ,  (2) 

 

where the exponent, n, was shown analytically to take the value of 3 for the 3D and 5 for the 

2D random cases. The author also succeeded to fit experimental data for materials where the 

contacts between fibres are lines rather than points, e.g., fibre bundles, by adjusting the 

exponent in Eq. 2. Nevertheless, since the assumptions used in the analyses in [1, 2] proceeds 

from an assumption of point contact and bending of fibre segment, the fitting of Eq. 2 to data 

for highly parallel fibre architectures in [2] is to be considered as plainly phenomenological.  

 

 
 

Figure 1. Geometry of the contact between elliptic paroboloids with principal axes of body 1 (x1, y1, z1) and the 

principal axes of body 2 (x2, y2, z2). The angle  is the angle between the x1, z and x2 z planes, i.e. the principal 

radii of curvatures R1 and R2.  

 

A striking quality of the spread tow technology is the possibility to obtain extremely parallel 

fibre assemblies. This is in contrast to a typical reinforcement where the fibre architecture are 

usually somehow irregular. Therefore in the context of mechanical behaviour, the 

compressive response of the highly oriented spread-tow fabrics is expected to be significantly 

different from the standard reinforcement. The main difference between the two types of 

fabrics is the constitutive assumption of load transfer mechanism between the fibres [2]. 

Namely, in standard fabric the load transfer is assumed via bending of fibre segments, while 

in spread tow fabric the main mechanism is assumed to be Hertzian contact between adjacent 

fibres. Therefore, in this paper we study the constitutive behaviour of highly parallel fibre 

network governed by Hertzian contact. The theoretical study is also supported by 

experimental characterisation of the transverse compressibility of the highly anisotropic and 

packed CF spread-tow fibre assemblies. The resulting force-deflection curve is analysed 

against the Hertzian contact modelling effort to give effective transverse modulus.  
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2. Theoretical background   

 

The problem of contact between elastic bodies has long been of considerable interest. Assume 

that two elastic solids are brought into contact at a point 0, as shown in Fig. 1. If collinear 

forces are applied so as to press the two solids together, deformation occurs, and we expect a 

small contact area to replace the point of the unloaded state. If we would able to determine the 

size and shape of this contact area and the distribution of normal pressure, then the interval 

stresses and deformation could be calculated.  

 

 
 

Figure 2. Geometry of deformed bodies. Dashed lines show the surface as they would be in the absence of 

deformation. Continuous lines show the surfaces of the deformed bodies.  

 

In the analysis of the contact problem by Hertz, as extended by Timoshenko and Goodier [3], 

the following is assumed: (1) the contacting surfaces are perfectly smooth so that the actual 

shape can be described by a second degree equation of the form FxyEyDxz  22  where 

D, E and F are arbitrary constants.; the elastic limit of the materials are not exceeded during 

the contact; (3) only normal forces between the contacting surfaces are considered; and (4) the 

contacting surfaces are small in comparison to the entire surfaces. Based on the above 

assumptions and by applying potential theory it can be showed that: (1) the contact area is 

bounded by an ellipse whose semi-axes can be calculated from the geometric parameters of 

the contacting bodies; and (2) the normal pressure distribution over this area is 

   22

0 1 bxaxpP  , where 0p  is maximum pressure at centre, a is the major axis of 

ellipse of contact and b is the minor axis of ellipse. If the two bodies are pressed together by 

applied normal forces (cf. Figure 3), then a deformation occurs near the original point of 

contact along the Z-axis. Here again, we consider only forces acting parallel to the z-axis 

where the distance from the z-axis is small. The displacements at a point are w1 and w2 where 

w1 is the deformation of point P1 of body 1 and w2 is the deformation of point P2 for body 2, 

plane C is the original plane of tangency; zl is the distance from Pl to the undeformed state , 

and z2 is the distance from P2 to the undeformed state. For points inside the contact area, we 

have    2211 wzwz  , where  P  is the deformation function we seek. To solve the 

problem, consider the contact surfaces and define the following geometrical relations [4] 

 

 









ll RRRR
BA

2211

1111

2

1
  (3) 

 



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

4 

 

and 
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The constants A and B are expressions for the combinations of the principal curvatures of the 

surfaces and the angle between the planes of curvature. These are used to calculate   via the 

relation  

 

 21

22 wwByAx  .  (5) 

 

The problem is now to find a pressures distribution and potential functions to satisfy the 

Eq. 5. The generic solution based on the use of elliptic integrals is to found in numerous 

textbooks onto contact mechanics, see e.g. [4]. Therefore we will here focus on the contact 

mechanics of fibres in contact with fibres and plane, i.e. the special case of line contact. To 

solve this problem we shall make use of the expressions already developed [3] to solve for the 

"pressure distribution" and size of the area of contact by allowing one axis of the ellipse of 

contact to become infinite. To determine the deformation, the contact area will be taken as 

being a finite rectangle with one side very much greater than the other. The derivation will be 

for the case of a pair of cylinders with their axes parallel and is based on the work presented 

in [3]. The solution for a cylinder to plane contact can easily be obtained by allowing the 

radius of one of the cylinders to become infinite.  

 

 
 

Figure 3. Contact geometry between two parallel cylinders.  

 

Line contact occurs when two cylinders rest on each other with their axes parallel, cf. Fig. 3, 

and when a cylinder rests on a plane. As the two cylinders are pressed together along their 

axes , the resulting pressure area is a narrow "rectangle " of width 2b and length L (assuming 

no taper in the cylinders). In other words , the area of contact is an elongated ellipse with the 

major axis of the ellipse equal to L and the eccentricity approaching unity. Without going into 

details, due to limited space, the total deformation of a pair of cylinders with their axes 

parallel (after some lengthy algebra) can be obtained as  
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where b is given by  
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and where  
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The Eq. 6 (together with Eq. 7) is simplified to the following expression for a cylinder on a 

flat surface  
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Figure 4. Self-adjusting compaction rig.  

 

The main result of the above derivations is the observation that the relation between the 

deformation and the applied force is nearly linear for moderate loadings such as the expected 

for typical manufacturing processes of composite material. This is evident when 

representative material data for carbon fibres and steel plate are used in Eqs. 6 and 9: CFs 

transverse stiffness of 91015 TE  Pa and Poisons ratio of 35.0T , CFs diameter of 
6103 fibR  m, together with data for steel. This leads to a relation between deformation and 

force in terms of  

 

 PP ln1017.11022.3 87    or 6101.3 P   (10a) 

 

for contact between two fibres, and as  

Testing area 

Ball joint 

Machine attachment 

Machine attachment 
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 PP ln1029.61073.1 97    or 6108.5 P   (10b) 

 

for contact between a fibre and steel surface. Of course, the above derivations are for a single 

fibre only and needs to be further revised for multiple fibres and fibre assemblies. However, 

one can still conclude that compressibility of parallel fibre assemblies is (nearly) linear with 

respect to the applied force (following from a simple assumption of P in Eq. 10a,b being a 

sum of individual fibre forces). This is in contrast to the commonly observed behaviour in 

standard reinforcement where the behaviour is expected to be power law, cf. Eqs. 1 and 2.  

 

2. Experimental method and results  

 

Since compressive testing of extremely thin fabric (in the case of the studied TeXtreme® UD 

spread-tow band approximately 0.05 mm) requires an terrific parallelism of the testing 

equipment, we decided to develop an self-adjusting test rig where the adjustment is performed 

using a ball-joint, cf. Fig. 4. The test rig was machined from a single piece of steel and consist 

of machine attachment, testing area and a ball-joint used for the parallelism adjustment. 

Machine compliance was subtracted from the experimental force-deflection data by assuming 

a spring model. The tested material was TeXtreme® UD spread-tow bands from Oxeon 

consisting of TR50S 15k CF fibres. A typical force-deflection data for the TeXtreme® UD 

spread-tow, after correcting for machine compliance, results in an almost linear relation 

between Force and Deflection given as 310186 P .  

 

3. Concluding remarks  

 

In this contribution we have studied the constitutive behaviour of nearly parallel fibre 

assemblies in the form of TeXtreme® UD spread-tow bands from Oxeon. The results indicate 

that the compressive behaviour of the nearly parallel fibres should obey a linear relation, see 

Eqs. 10a and b, which is in contrast to the standard textile reinforcements that obey power law 

type of behaviour. This theoretical investigation is further supported by our initial 

experimental data which shows almost linear behaviour. Compared to the theoretical 

investigation, the experimental data shows however somehow higher compliance. This could 

be due to various phenomena such as, amongst other; limited fibre parallelism resulting in 

partial or elliptical-type of contact, non-homogeneous fibre distribution and theoretical 

development performed for a single fibre only. This needs to be further investigated into in 

the near future.  
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