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Abstract
The main contribution of this work is the prediction of the linear elastic properties of short
fiber-reinforced composites (SFRCs) and the estimation of the fiber orientation distribution
function (FODF) based only on fiber orientation tensors of second order. A SFRC consisting
of polypropylene with 30wt% of short glass fibers is considered exemplary. In the first part,
two micromechanically based mean field methods are applied to approximate the linear elastic
properties of the composite. Both presented methods, the self-consistence method and a two-
step bounding approach, are able to consider segmented microstructure date from, e.g., micro
computer tomography measurements. In the second part, it is shown, how the FODF can be
estimated without closure approximations using the maximum entropy method (MEM).

1. Homogenization of short fiber-reinforced composites

1.1. Introduction

Short fiber-reinforced composites (SFRCs) are steadily used for more and more applications.
Due to the fact, that SFRCs show heterogeneities on different length scales concerning micro-
structural properties like fiber volume fraction and fiber orientation distribution, a robust dimen-
sioning of light-weight structures with reinforced materials is still a challenging task.

In this paper, different micromechanically based mean field approaches are utilized in order to
model a composite material consisting of 30wt.-% of glass fibers reinforcing a polypropylene
matrix (PPGF30). The models operate on microstructure data from micro-computer tomogra-
phy (µCT) measurements, which are used to extract the aspect ratio and the orientation of the
fibers [7]. The effective linear elastic properties are determined by the self-consistence method
and a two-step bounding approach. The numerical results are compared with experimental re-
sults out of tensile test.
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1.2. Self-Consistence Homogenization

The microstructure of the SFRC can be characterized by a distinct matrix and N fibers with the
stiffness tensors CM and Cα, respectively. Each fiber, constituted by the fiber axis nα and the
fiber aspect ratio aα, is separately used in the SC scheme.

Following [11], the effective elastic stiffness C̄ can by calculated exactly for the given composite
by

C̄ = CM +

N∑
α=1

cα (Cα − CM)Aα. (1)

In the last equation, cα is the volume fraction of each fiber. The fourth-order tensor Aα is
called strain localization tensor. For ellipsoidal inclusions, Aα is available explicitly. With
the approximation of the cylindrical fibers through ellipsoids with equal volume and length
like the cylinder, and the assumption, that each fiber is embedded in an infinite homogeneous
matrix consisting of the effective material CSC, the strain localization tensor Aα depends on the
effective material CSC, the fiber material Cα, the orientation of the fiber axis nα and the fiber
aspect ratio aα. Considering these assumptions in equation (1), and replacing the exact C̄ with
the approximating CSC gives the implicit equation for the effective linear elastic stiffness:

CSC = CM +

N∑
α=1

cα (Cα − CM)
(
Is + PSC

0

(
Cα − CSC

))−1
. (2)

PSC
0 is called polarization tensor. This quantity depends on the geometry of the ellipsoidal

representation of the fiber and the effective material CSC (see [11]). This equation is solved
numerically using a damped Newton-Raphson method.

1.3. A Two-Step Bounding Method

In the first step the microstructure is decomposed into as many domains as there are different
inclusions or fibers, respectively. The volume fraction of the matrix attributed to each fiber
corresponds to the volume fraction of the total matrix fraction cM = 1 − cF. Each pair of a
fiber and the surrounding matrix material is homogenized by applying the unidirectional (UD)
special case of the second-order Hashin-Shtrikman (HS) bounds [8]:

CUD−
α = CM + cF (Cα − CM)A−α, CUD+

α = CI + (1 − cF) (CM − Cα)A+
α. (3)

A+
α and A−α are the strain localization tensors:

A−α =
(
Is + (1 − cF)PUD (Cα − CM)

)−1
, A+

α =
(
Is + cF PUD (CM − Cα)

)−1
. (4)

The polarization tensor PUD is explicitly known for the UD case [8]. The elastic behavior of the
domains, denoted by CUD

α is transversely isotropic. The homogenization of the elastic behavior
of the aggregate of domains is done by applying the HS-scheme for granular microstructures [8].
Only corresponding predictions are combined: the lower bound for the domains is homogenized
with the lower HS bound for the aggregate, whereas the upper bound is homogenized with the
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Table 1. Elastic properties for glass from [9] and measured linear elastic properties for PP and PPGF30.

E [GPa]ν

Glass 73.0 0.22
PP 1.665 0.364
PPGF30 (0◦) 4.482 0.271
PPGF30 (90◦) 3.452 0.217
PPGF30 (45◦) 3.540 0.304

upper HS bound. The stiffness tensors are denoted by CHS++ and CHS−−, respectively:

CHS± =

N∑
α=1

cα
cF
CUD±
α A±α =

N∑
α=1

cα
cF
CUD±
α M±

α

〈
M±〉−1

, (5)

with

M±
α =

(
Is + P0(CUD±

α − C±0 )
)−1

,
〈
M±〉 =

N∑
β=1

cβ
cF

(
Is + P0(CUD±

β − C±0 )
)−1

. (6)

Now, P0 is the polarization tensor for a spherical inclusion, which is embedded in a matrix with
the material C±0 . In case of the upper HS bound, for this material the maximum isotropic part
of all CUD+

α is taken. Otherwise, for the lower HS bound of the aggregate, C±0 is equal to the
minimum isotropic part of all CUD−

α .

1.4. Measured Microstructure

Usually, the manufacturing of injection molded thin plates, made of SFRC, results in a cross
section, the microstructure of which shows three characteristic sections: Near the walls of the
plate, the fibers are mainly oriented in flow direction of the material, but in the core section, the
orientation of the fibers is predominantly perpendicular to the flow direction. This observation
is also apparent from the reconstruction of the µCT data in Fig. 1(a). In order to get this infor-
mation, a cylindrical specimen with a diameter D = 4mm has been measured by µCT with a
resolution of 1.8µm. Then, from this 3D voxel data the position, the axis orientation, the length
and the diameter of a statistically representative set of the fibers have been determined.

1.5. Results and comparison

In Tab. 1 the elastic constants of the glass fibers and the polymeric matrix, which have been
used within the homogenization procedure, and the measured properties of the composite in
three directions are given. The measured data have been obtain from tensile test in the filling
direction during injection molding (0◦), the transverse direction (90◦), and a third direction
(45◦). In order to compare the elastic properties of the composite for each homogenized elastic
stiffness, the direction-dependent Youngs modulus E(d) has been calculated and evaluated in
the corresponding directions [3]:

1
E (d)

= d ⊗ d · S [d ⊗ d] , (7)
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(a) (b)

Figure 1. (a) Reconstruction of the segmented µCT data; (b) Isospherical projection of the direction-dependent
Young’s modulus in comparison with experimental results.

where d is the direction vector parametrized in spherical coordinates. In Fig. 1(b), the homoge-
nization results are compared with experimental measurements. In this figure, the isospherical
projection of the shape of the direction-dependent Young’s modulus on the plane, from which
the tensile specimen have been prepared, is shown. It can be seen, that the experimental and
the SC results are located between the two-step results. The admissible range for the elastic
properties bounded by the two-step methods amounts to about 5MPa. Compared with the ex-
perimental measurements, the SC method predicts higher Young’s modulus in all directions.
The difference ranges between 0.23 and 0.31MPa.

1.6. Conclusions

The discussed mean field homogenization approaches are capable of handling the segmented
µCT data and taking into account the anisotropic distribution of the fiber axes, the length, and
the radius distribution. Operating on this discretized data, the considered methods deliver
anisotropic elastic stiffnesses. The anisotropy is caused by the microstructure properties. In
the discussed cases, the self-consistence homogenization method based on the segmented µCT
data predicts a stiffer material behavior compared to tensile test.

2. Estimation of the fiber orientation distribution function

2.1. Introduction

The distribution of the fiber orientations is an essential attribute of the microstructure of SFRCs.
Especially in shell-like injection molded parts, it has been frequently observed, that the fibers
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are oriented in layers [1]: In the boundary layers, the fibers are predominantly oriented in
the filling direction and in the core layer perpendicular to it. The one point statistics of the
fiber orientations can be described with fiber orientation distribution functions (FODF) or with
an infinite set of fiber orientation tensors. In mold flow simulations, usually, the mean fiber
orientation distribution is described by second order fiber orientation tensors. These tensors are
used in conjunction with closure approximations to estimate the fourth order fiber orientation
tensors. The orientation tensor of fourth order is then utilized to estimate the effective properties
of the composite.

In this work, it is shown, how the FODF can be approximated, if only discrete fiber orientations
or the leading fiber orientation tensors are available. Since these tensors can not describe the
orientation distribution entirely, a unique solution for this so-called moment problem does not
exist.

2.2. Properties of the fiber orientation distribution function

The orientation of a fiber axis can be described with a unit vector n. The FODF specifies the
volume fraction of all fibers with a certain orientation n (see, e.g. [2]):

dv
v

(n) = f (n) dS , (8)

where dS is a surface element of the unit sphere S := {n ∈ R3 : ‖n‖ = 1}. In general, a density
function like the FODF is normalized and always non-negative:∫

S
f (n) dn = 1, f (n) ≥ 0∀n ∈ S . (9)

A fiber does not have an explicit direction. Thus, the orientations indicated by n or −n are
equal:

f (n) = f (−n). (10)

2.3. Empirical fiber orientation distribution function

For N equal weighted fiber orientations n, the empirical FODF f (n) is defined as

f (n) =
1
N

N∑
α=1

δ(n− nα). (11)

Herein, δ(n− nα) is the Dirac delta distribution on unit vectors.

2.4. Fiber orientation tensors

Kanatani [6] distinguished three different kinds of fiber orientation tensors. The fiber orienta-
tion tenors of the first kind are averages of the dyadic products of the directions nα:∫

S 2
f (n) n⊗β dn =

1
N

N∑
α=1

n⊗βα = N〈β〉, (12)
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whereas, n⊗βα specifies a (β − 1)-times tensor product. These tensors are symmetric and, since
the FODF is an even function, they are of even rank. A contraction of an β-order tensor reduces
the rank by two:

N〈β〉 [I] = N〈β−2〉 ∀β ∈ {2, 4, 6, . . . }. (13)

Hence, the fiber orientation tensors of the first kind are not linearly independent. Thus, it is
sufficient to use only the β-order tensor for the βth approximation of the FODF.

Fiber orientation tensors of the third kind are symmetric and completely traceless. Such ten-
sors are called deviatoric tensors or irreducible tensors. Using these tensors, the polynomial
expansion of the FODF becomes

f (n) = D +

∞∑
α=1

D〈2α〉 ·
(
n⊗2α

)′
. (14)

In the last equation, D〈s〉 are irreducible tensors:

D〈α〉 =
2α + 1

2α

(
2α
α

) (
N〈α〉

)′ . (15)

All D〈α〉 are orthogonal to each other in terms of the inner product

( f , g) =

∫
S 2

f g dn = 0. (16)

In order to fulfill the normalization condition in equation (9), D is usually chosen equal to one.

2.5. Maximum entropy method

The inherent incompleteness of measured data implies ill-posed mathematical problems, which
do not have unique solutions. With the maximum entropy method (MEM) it is possible to
single out one solution by choosing the solution with the maximum entropy. Shannon [10]
identified a quantity in the context of information theory, that is a measure of uncertainty of an
information source. Due to the related meaning and the equivalent mathematical formulation of
this quantity to the entropy in thermodynamics, it is called Shannon’s-entropy or information-
theoretic entropy. Jaynes [4, 5] introduced the MEM in the area of statistical mechanics. A
comprehensive overview of the MEM is given in [12].

The information-theoretic entropy is defined by

S = −

∫
S

f (n) ln ( f (n)) dS ∈ (−∞, 0], (17)

where f (n) is an orientation distribution function. For an uniform distribution the information-
theoretic entropy is equal to zero.

Moment Problem Since the moment of the function n⊗α regarding the density function f (n)
is computed by

〈n⊗α〉 = N〈α〉 =

∫
S

f (n) n⊗α dS (18)
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Figure 2.

∀α = {2, 4, . . . }, fiber orientation tensors N〈α〉 can be considered as averages or expectations
of the corresponding functions n⊗α. Thus, the operation denoted by 〈·〉 depicts an orientation
averaging process.

In order to approximate the density function f (n) by a function f̄ (n) using N given moment
tensors {D〈2〉, . . . , D〈N〉}, the moment problem is stated as follows:

S̄ = −

∫
S

f̄ (n) ln
(

f̄ (n)
)

dS → max,

C0 :=
∫

S
f̄ (n) dS − 1 !

= 0,

C〈α〉 :=
∫

S
f̄ (n)

(
n⊗α

)′ dS − D〈α〉
!
= 0,

(19)

where α is even and ranges from 2 to N. In this nonlinear constrained maximization problem,
fiber orientation tensors of the third kind are used. The first side condition C0 respects the
normalization condition in equation (9.1). The normalization of a density function is equal to
chose D = 1 in the expansion of the FODF in equation (14). The additional side conditions
demand, that the appropriate given moment tensor is reproduced by the estimation function
f̄ (n). Using the Lagrange multiplier method, this problem can be solved with the following
objective functional:

F = S̄ −G0C0 −

N/2∑
α=1

G〈2α〉 · C〈2α〉. (20)

2.6. Results and Discussion

In Fig. 2, the approximation of the FODF according to the procedure given in the previous sec-
tion is shown as polefigure. This approximation is based on the second-order fiber orientation
tensor of the microstructure shown in Fig. 1(a). The out-of-plane direction in Fig. 2 corresponds
to the y-direction in Fig. 1(a). It can be seen, that the main fiber orientation, indicated by the
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greatest value in Fig. 2, is not located in y-direction, which is the filling direction during the
injection molding process. The anisotropy visible in this figure conforms with the anisotropy
of the directional-dependent Young’s modulus in Fig. 1(b). Nevertheless, it is also visible, that
the fibers with an orientation perpendicular to the filling direction, are not properly consid-
ered in this approximation. Therefore, it is reasonable to take into account further orientation
information as, e.g., the irreducible tensors of fourth order.
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