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Abstract
In the numerical modeling of composite materials and structures, microscopic heterogeneities
introduce the need for defining homogenized properties depending on microscopic details. Real
time image-based calculations in the framework of the on-line control of manufacturing pro-
cesses demands the prediction of the local homogenized properties of a heterogeneous material
at different scanning scales, as fast as possible for a given acceptable error. Therefore, model
reduction techniques open new routes for performing such kinds of efficient high-resolution
homogenization.

In this work we propose different reduced order models of thermal conductivities of heteroge-
neous microstructures, with low and high contrast between both materials, and then we extend
the methodology for addressing the homogenization of mechanical properties or the one related
to the flow in porous media.

1. Introduction

Numerical homogenization problems can be solved with geometrical data coming from high-
resolution images. However, digital images may contain a huge amount of information that
is difficult to handle efficiently in numerical models. So image-based computation requires
advanced numerical techniques to be developed. Alternatively it raises the question of the
minimum resolution of images to predict an effective property with a sufficient accuracy which
in turn raises the question of the acceptable error. It is still an open question in composite
materials for properties of interest such as thermal conductivity, elasticity or permeability for
instance.

In this work we propose a first approach using model reduction techniques to provide com-
pact representations of these images and facilitate efficient computations of the microstructure-
property relations.
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2. Thermal homogenization

LetM be a microstructure occupying the volume w at position X ∈ Ω. Points in w(X) will be
denoted by x. We do not consider here the problem related to the definition of the representative
volume element [4]. If we consider a thermal problem, the microstructure is defined by the
thermal conductivity tensor k(x). We are in the case of a material composed of two phases,
so we will have two different values for the components of k(x) (depending on the position x),
each phase is assumed homogeneous and isotropic.

From now we assumed that the conductivity field is known everywhere in w, that is k(x ∈ w) is
known. The crucial question being to predict the homogenized conductivity K(X). Note than
even if each phase is assumed homogeneous and isotropic, the homogenized material could be
heterogeneous and anisotropic, depending on the relative distribution of both phases.

In the following we propose a homogenization technique for relating the macroscopic thermal
flux Q(X) and temperature gradient G(X) at X according to:

Q(X) = −K(X) ·G(X) (1)

where K(X) is the searched homogenized thermal conductivity.

At the microscopic level the relation between the local gradient g(x) and the local heat flux q(x)
is perfectly defined from the local conductivity tensor k(x) and reads:

q(x) = −k(x) · g(x) (2)

We assume a localization tensor L(x,X) relating the local g(x) and the macroscopic G(X) tem-
perature gradients known for a while. Several approaches are proposed in the literature to define
this tensor, according to the choice of the boundary conditions. Our objective here is not to dis-
cuss this choice, for this purpose the interested reader can find some details in [3]. We have
selected the approach in which the localization tensor is defined from:

g(x) = L(x,X) ·G(X) (3)

Averaging Eq. (2):

Q(X) = 〈q(x)〉 =
1
|w|

∫
w

q(x) dx = −〈k(x) · g(x)〉 = 〈k(x) · L(x,X) ·G(X)〉 =

= 〈k(x) · L(x,X)〉 ·G(X) (4)

from which we can identify the expression of the homogenized thermal conductivity:

K(X) = 〈k(x) · L(x,X)〉 (5)

Thus, in order to compute the homogenized thermal conductivity tensor we only need to deter-
mine before the localization tensor L(x,X).
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To do so, in w(X) the heat equation results:

∇ · (k(x) · ∇T (x)) = 0 (6)

If we have a temperature field T1(x) such that the gradient of the solution g1(x) = ∇T1 verifies:

〈g1(x)〉 = G1(X) = (1, 0)T (7)

and a second one T2(x) such that:

〈g2(x)〉 = 〈∇T2(x)〉 = G2(X) = (0, 1)T (8)

From the localization tensor definition:

g(x) = L(x,X) ·G(X) (9)

the first column of L(x,X) is g1(x) and the second one is g2(x).

Thus, we have to define two steady state thermal problems that allow to obtain the two previous
particular thermal fields T1(x) and T2(x) which define the localization tensor at each position
x ∈ w(X) in each microstructure.

It is easy to prove that the thermal problems are the following ones:{
∇ · (k(x) · ∇T1(x)) = 0
T1(x ∈ ∂w) = x (10)

which:
〈g1(x)〉 = 〈∇T1(x)〉 = G1(X) = (1, 0)T (11)

and: {
∇ · (k(x) · ∇T2(x)) = 0
T2(x ∈ ∂w) = y (12)

which solution:
〈g2(x)〉 = 〈∇T2(x)〉 = G2(X) = (0, 1)T (13)

To calculate K(X) we then need to solve two thermal problems using the Finite Element Method.
As this is expensive form the computation point of view, we need to reduce our model.

3. Reduced order modeling

Consider a mesh consisting of n nodes, and associate to each node an approximation function
(e.g. a shape function in the framework of the finite element method). We thus implicitly define
an approximation space wherein a discrete solution of the problem is sought.

In many cases, however, the problem solution lives in a subspace of dimension much smaller
than n, and it makes sense to look for a reduced-order model whose solution is computationally
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much cheaper to obtain. This constitutes the main idea behind the Proper Orthogonal Decom-
position (POD) [1] [2], briefly revisited hereafter.

We are going to construct a reduced basis from a set of N microstructures (in the numerical
experiments that follow we considered N= 100) for computing the homogenized thermal con-
ductivity tensor K(X) in ”real time” for any new microstructure. These N microstructures can
be viewed as the sampling of a composite stuctures or some realisations in a stochastic process.

3.1. Extracting relevant information: the Proper Orthogonal Decomposition

We assume that a numerical approximation of the unknown temperature fields of interest Tr(x, t),
r = 1, 2 for the two problems here considered is known at the nodes xi of a spatial mesh, with
i ∈ [1, · · · , n]. We define Tr as the vector of nodal values for both thermal problems. The main
objective of the POD is to obtain the most typical or characteristic structure φr(x) among these
Tr(x). For this purpose, we define a set ofN microstructures (in the numerical experiments that
follow we considered N= 100) and we consider and solve using the Finite Element Method,
for each microstructure the previous two thermal problems, and then we maximize the scalar
quantities:

αr =

[∑n
i=1 φr(xi)Tr(xi)

]2∑n
i=1(φr(xi))2 ; r = 1, 2 (14)

which leads to solve the following eigenvalue problems:

crφr = αrφr; r = 1, 2 (15)

Here, the vectors φr have i-component φr(xi), and cr is the two-point correlation matrix:

cr,i j = Tr(xi)Tr(x j); r = 1, 2 (16)

which is symmetric and positive definite. Being P the number of snapshots (P = N if we
consider all the analyzed microstructures), we define the matrix Qr:

Qr =


T 1

r (x1) T 2
r (x1) · · · T P

r (x1)
T 1

r (x2) T 2
r (x2) · · · T P

r (x2)
...

...
. . .

...
T 1

r (xn) T 2
r (xn) · · · T P

r (xn)

 ; r = 1, 2 (17)

and we have:
cr = Qr ·Qr

T; r = 1, 2 (18)

3.2. Building the POD reduced-order model

In order to obtain a reduced-order model, we first solve the eigenvalue problems (15) and select
the lr eigenvectors φr

i associated with the eigenvalues belonging to the interval defined by the
highest eigenvalue αr

1 and αr
1 downscaled by a large enough number (e.g. 108) for both thermal

problems. In practice, lr is found to be much lower than n. These lr eigenfunctions φr
i are then
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used to approximate the solution Tr(x). To this end, let us define the matrix Br = [φr
1, · · · , φ

r
lr
]:

Br =


φr

1(x1) φr
2(x1) · · · φr

lr
(x1)

φr
1(x2) φr

2(x2) · · · φr
lr
(x2)

...
...

. . .
...

φr
1(xn) φr

2(xn) · · · φr
lr
(xn)

 ; r = 1, 2 (19)

Now, we want to compute the temperature fields for any new microstructureM different of the
N microstructures that served for defining the reduced models. One must thus solve a linear
algebraic system of the form:

H · Tr = Fr; r = 1, 2 (20)

A reduced-order model is then obtained by approximating Tr in the subspace defined by the lr

eigenvectors φr
i :

Tr ≈

lr∑
i=1

φr
i ζ

r
i = Br · ζr; r = 1, 2 (21)

Equation (20) then reads:
H · Br · ζr = Fr; r = 1, 2 (22)

or equivalently:
BT

r ·H · Br · ζr = BT
r · Fr; r = 1, 2 (23)

where BT
r is the transpose of Br.

The coefficients ζr defining the solution of the reduced-order model are thus obtained by solving
an algebraic system of size lr instead of n. When lr � n, as is the case in numerous applications,
the solution of (23) is thus preferred because of its much reduced size.

4. Combining thermal homogenization with reduced order modeling

In our image-based simulation, we generate a set of 100 squared microstructuresN = 100, with
100 circular inclusions of the same radius representing the fibers placed randomly in the domain.
We only change the position of the fibers, allowing contacts between them and prohibiting their
overlapping. Fiber volume fraction is 0.49. Each pixel of each microstructure has a known local
conductivity tensor depending on whether it belongs to the fiber or to the polymer matrix.

Once we have well-defined the set of 100 microstructures, we solve both thermal problems
(since we are in the case 2D) with their respective boundary conditions, obtaining two tempera-
ture fields (Eqs. (10) and (12)). After that, we apply the SVD (Singular Value Decomoposition)
to each to identify which are the most significant modes and so to reduce our model building
a reduced basis. We will construct several reduced matrices with different numbers of signifi-
cant modes lr, to quantify which is the loss of accuracy between the reduced and the reference
solution.

At this point we generate a new microstructure,M101, and we follow the previous homogeniza-
tion procedure to compute the reference homogenized conductivity tensor.
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Now we compute the reduced homogenized thermal conductivity tensor, i.e., instead of com-
puting the temperature fields of the new microstructure, we build a reduced basis that comes
from the set of 100 microstructures and from it we compute the reduced homogenized thermal
conductivity tensor. We do this taking different number of significant modes coming from the
SVD and we compute the relative error between both tensors to quantify the accuracy of our
method.

5. Results

In this test we generate as a new microstructure one with the same characteristics as the set of
100 microstructures, i.e., we only change the position of the inclusions (Fig. 1).

Figure 1. New microstructure obtained by changing the inclusions’ position

5.1. Low contrast

We consider a local conductivity inside the fibers k1 = 20 (W/mK) and a local conductivity of
the matrix material k2 = 10 (W/mK).

The reduced homogenized thermal conductivity tensor is computed six times, each of them
taking a different number of significant modes coming from the SVD (100, 95, 75, 50, 20 and
2 modes). The relative error, depending on the number of significant modes, is estimated as:

E =

√
(λmax − λred

max)2

(λmax)2 (24)

λmax and λred
max being the maximum eigenvalues of the reference and the reduced homogenized

thermal conductivity tensors.

One can see from Fig. 2 that the relative error corresponding to the reduced solution computed
only with the first 2 modes coming from the SVD is really low.

We obtain really low relative errors when the contrast between the local conductivity of the
fibers and the polymer matrix is small. So we can say that the method can be considered as
a predictive method, because it allows us to predict which will be the homogenized thermal
conductivity tensor of a new microstructure from a set of microstructures previously computed
off-line.
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Figure 2. Relative error depending on the number of modes. Low contrast between conductivities

5.2. High contrast

For the case of high contrast between the two materials involved in the microstructure, we
consider a local conductivity inside the fibers k1 = 20 (W/mK) and a local conductivity of the
matrix material k2 = 1 (W/mK).

When the contrast between the local conductivities of both materials (fiber and polymer) is
higher, the relative errors increase a lot. The reason is that we have a too large temperature gra-
dient of the thermal modes in the region occupied by the largest conductivity material (fibers),
where the temperature gradient of the solution should be the smallest one. This conflict creates
significant errors when using the reduced models for calculating the homogenized conductivity.

Thus, it is necessary to correct the reduced temperature fields obtained in the prediction stage
(using the reduced model) before computing their gradient for evaluating the localization tensor
(correction step). For that, starting from the reduced temperatures of both fields, we apply an
iterative method to correct the solution.

We have considered as a corrector three iterative methods: Jacobi, Gauss- Seidel and Conjugate
Gradient.

We compare the computing time per iteration in seconds, the number of iterations required to
reach a 10% error between the reference and reduced tensors, and finally the total time required
to reach an error of 10% between the reference and reduced tensors in minutes.

The conjugate gradient method is the cheapest computational method.

Results in Fig. 3 show that the relative error corresponding to the reduced solution computed
only with the first 2 modes coming from the SVD is really high and after applying the conjugate
gradient method as a corrector method we obtain a relative error of 10% with 8 iterations.

6. Conclusions

In this work we have performed computational homogenization, introducing the reduced bases
of the thermal fields coming from the reduced order modeling in the homogenization process.
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Figure 3. Relative error depending on the number of modes and Corrected relative error depending on the number
of iterations. High contrast between conductivities

The homogenized thermal conductivity tensor in a complet or in a reduced way exhibits a low
relative error between both tensors. We can improve the reduced computational homogenization
applying correction methods, because these methods allow us to reduce the relative error due to
an eventual high contrast between phases.

The next step is the application of this methodology to compute mechanical and flow properties,
in particular, homogenized elasticity and permeability from digital microstructures.
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