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Abstract
Suspensions involving nanoparticles are widely used in the development of engineered mate-
rials. These particles allow changing both the properties and the behavior of these materials.
CNTs suspensions present different behaviours depending on their concentrations. For dilute
concentrations, microscopic, mesoscopic and macroscopic descriptions have been well applied
to describe the rheology of these suspensions. When the suspensions become too concentrated,
fiber-fiber interactions occur and richer microstructures can be observed. It is in this case
when the difficulties appear. Kinetic theory is a useful micro-to-macro approach for solving
the flow of such kind of suspensions as it allows including the microstructure characteristics at
the macroscale without a significant loss of information. However, in order to represent well
experimental data, numerous physics have still to be introduced in our model at the micro-scale.

In this work, we focus on the modeling of the aggregates elasticity in concentrated suspensions
of CNTs. Establish a micro-mechanical approach taking into account the clusters elastic effects
constitutes the main contribution of the present work.

1. Introduction

CNTs suspensions present different behaviours depending on their concentrations. For dilute
concentrations, the motion and orientation of each CNT that moves with the suspending fluid is
assumed decoupled from the others according to the Jefferys equation [9]. The representative
population can involve too many fibers, and in that case the computational efforts to track the
population is unaffordable. Thus, the simple and well-defined physics must be sacrificed in
order to derive coarser descriptions.

Kinetic theory approaches [4] [10] describe such systems at the mesoscopic scale. Their main
advantage is their capability to address macroscopic systems, while keeping the fine physics
through a number of conformational coordinates introduced for describing the microstructure
and its time evolution. At this mesoscopic scale, the microstructure is defined from a distri-
bution function that depends on the physical space, the time and a number of conformational
coordinates. The moments of this distribution constitutes a coarser description in general used
in macroscopic modeling [3]. At the macroscopic scale the equations governing the time evo-
lution of these moments usually involve closure approximations whose impact in the results is
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unpredictable [5] [7].

When the concentration increases, fiber-fiber interactions occur leading to the formation of
clusters of entangled particles and appropriate models addressing these intense interactions must
be considered, as for example the one proposed in [8]. In the extreme case, a sort of clusters
composed of entangled rods are observed [11] [12]. When the suspension flows those clusters
seem animated of almost rigid motions.

Clusters can be viewed as entangled aggregates of N rods, with these rods consisting of a rigid
segment joining the two beads located at the segment ends where it is assumed that forces apply.
In what follows, we consider the cluster idealization depicted in Fig.1

Figure 1. Star representation of a cluster composed of rigid rods.

The first force applied, FH
i , is the hydrodynamic force due to the flow, which is proportional to

the difference of velocity between the fluid and the bead,

FH
i = ξ (∇v · pi L − ṗi L) (1)

where ξ is the friction coefficient and v the flow velocity field unperturbed by the cluster pres-
ence.

The second force considered, FC
i , is related to the rods entanglements. This force is assumed

scaling with the difference between the rigid motion velocity, the one that the bead would have
if the cluster would be rigid, and the real one [6] [2].

FC
i = µ (W · pi L − ṗi L) (2)

with
W = Ω + D · a − a · D (3)

where D and Ω are respectively the symmetric and skew-symmetric components of the velocity
gradient ∇v and a writes

a =
1
N

N∑
i=1

pi ⊗ pi (4)

By neglecting inertia effects [6] [2], the resulting moment for the whole cluster must vanish, so
the rod rotary velocity results

ṗi =
ξ

ξ + µ
∇v · pi −

ξ

ξ + µ
(D : (pi ⊗ pi)) pi +

µ

ξ + µ
W · pi =
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=
ξ

ξ + µ
ṗJ

i +
µ

ξ + µ
W · pi =

ξ

ξ + µ
ṗJ

i +
µ

ξ + µ
ṗC

i (5)

where ṗJ
i represents the hydrodynamic contribution in absence of rod-rod interactions (dilute

regime described by the Jeffery’s equation) and ṗC
i the one coming from the rods entanglements

that results in a rigid-like cluster kinematics.

2. Introducing elastic effects

Clusters immersed in a flowing suspension experience two types of transformations, a rigid-
like one associated with rigid motions and a second one implying the cluster stretching, both
considered until now purely viscous. Therefore, it cannot account for the elastic component ev-
idenced during classical rheological experiments on such suspensions [12]. To account for this
elasticity, a first alternative is described in [2], where a elastic mechanism has been introduced
at the aggregates scale. This phenomenological model is described below and will be compared
with another model derived from micromechanics.

When the cluster conformation is described from the second order moment a of its orienta-
tion distribution ψ, the simplest way of quantifying stretching is by evaluating its eigenvalues
change. In what follows we consider that clusters try to recover a configuration that combines
the recent ones by a sort of fading-memory but only in what concerns the cluster stretching, that
is, the memory does not concerns rigid motions.

It is assumed the orientation tensor aτ known at times τ ≤ t. Tensor aτ can be diagonalized
according to

aτ = RT
τ · Λτ · Rτ (6)

The reference configuration Λr
t that the cluster try to recover at time t reads

Λr
t =

t∫
0

m(t − τ) Λτ dτ (7)

where the memory function m(t − τ) decreases as t − τ increases, with m(t − τ) = 0 for t − τ ≥ θ
and

t∫
0

m(t − τ) dτ = 1 (8)

As soon as the reference configuration at time t, Λr
t , is available, the reference second order

moment at time t, ar
t , can be obtained by applying

ar
t = RT

t · Λ
r
t · Rt (9)

If the characteristic time of the elastic recover is T , then the equation governing the evolution
of the second order tensor reads

ȧ =
ξ

ξ + µ
ȧJ +

µ

ξ + µ
ȧC +

ar − a
T

(10)

Memory effects disappear when θ vanishes. In this case the memory function approaches the
Dirac’s delta distribution m(t − τ) = δ(t − τ). Thus the reference configuration corresponds to
the present one, i.e. ar

t = at, implying the cancellation of the last term.
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3. Towards a micro-mechanical approach

At the microscale, observations show that, during a simple shear flow, the cluster rotates with the
flow and stretch. When the flow stops stretching relaxes a reference configuration is recovered
and the reference conformation is built by considering a fading memory function, m(t − τ),
that takes into account the deformation history experienced by the cluster. This relaxation
mechanism depends on the stretching duration. Indeed, if the aggregate has undergone a short-
time deformation, it will come back to its initial conformation. However, if the deformation
state has been prolonged, the cluster will experience internal reconfigurations and will not come
back to its initial conformation but to one close to the deformed state.

Based on the characteristics of the behaviour of the cluster, it seem suitable to propose an
elasticity force applied at each bead of each rod of the cluster. This new force represents the
elastic interaction forces like a sort of springs between the rods inside the cluster. The second
order derivative is proposed in order to obtain a parabolic distribution of this interaction forces,
so one rod could have compression applied in one side and traction applied in the other.

FE
i = χE · ni =


t∫

0

k
∂2ṗi

∂p2
i

m(t − τ) dτ

 · ni (11)

where k is the rigidity of the cluster and ni is the unit vector perpendicular to the orientation pi

of each rod. Adding all the forces it results,

Fi = FH
i + FC

i + FE
i = L ((ξ ∇v + µ W) · pi − (ξ + µ) ṗi) + χE · ni (12)

By neglecting inertia effects, the resulting moment for the whole cluster must vanish, so the
only possibility is that the resulting force Fi acts along pi, that is Fi = λpi. Thus proceeding as
in [6] [2] we obtain,

ṗi =
ξ

ξ + µ
∇v · pi −

ξ

ξ + µ
(D : (pi ⊗ pi)) pi +

µ

ξ + µ
W · pi +

1
ξ + µ

χE · ni =

=
ξ

ξ + µ
ṗJ

i +
µ

ξ + µ
ṗC

i +
1

ξ + µ
ṗE

i (13)

where ṗE
i is the contribution due to the deformation history experienced by the cluster. Notice

that the elastic term will not depend on L because it is assumed that the rigidity constant k takes
into account the length L of the road. Note that the second order partial derivative of the rotary
velocity of the rod ṗi involves the fourth order partial derivative. In order to close the model we
only consider the Jeffery contribution in the rotary velocity involved in the elastic effects.

Until now, we have defined the elasticity force applied perpendicular to the rod, in the direction
named n. In order to obtain an exact closure relation it seems suitable to express the elasticity
term in the direction of the fibers p.

FE
i = χE · ni =


t∫

0

k
∂2ṗi

∂p2
i

m(t − τ) dτ

 · ni (14)
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with ṗi =
ξ

ξ+µ
ṗi

J. If we multiply ṗi
J by n we obtain θ̇J

i . Notice that the first term, which the
skew-symmetric component of the gradient of velocity tensor, is also void. So we have:

θ̇i =
ξ

ξ + µ
θ̇J

i =
ξ

ξ + µ
(ni

T · D · pi) =
ξ

ξ + µ
D : (pi ⊗ ni) (15)

and we proceed in order to obtain the second order partial derivative term from Eq. (14)

∂θ̇i

∂θi
=

ξ

ξ + µ
D : (ni ⊗ ni + pi ⊗ pi) (16)

∂2θ̇i

∂θ2
i

=
ξ

ξ + µ
D : (−pi⊗ni−ni⊗pi−ni⊗pi−pi⊗ni) =

ξ

ξ + µ
(−2D : (pi ⊗ ni + ni ⊗ pi)) (17)

It has been obtained the elastic force expressed in the direction p as

FE
i =

ξ

ξ + µ
· k (−2D : (pi ⊗ ni + ni ⊗ pi)) · ni = −4k ·

ξ

ξ + µ
((ni ⊗ ni) · D) · pi (18)

Now, the next step is to express the deformation history, in the direction p of the present time.
For this purpose we will multiply the elastic term with a rotation matrix. So we obtain,

FE
i = −4k ·

ξ

ξ + µ
(ni ⊗ ni)


t∫

0

Q(θ(τ)) · D ·QT (θ(τ)) m(t − τ) dτ

 · pi (19)

if we rename the term in brackets as D̃ and we proceed as in [6] [2] we finally obtain,

ṗi =
ξ

ξ + µ
ṗJ

i +
µ

ξ + µ
ṗC

i − 4k ·
ξ

(ξ + µ)2 (I − (pi ⊗ pi)) · D̃ · pi (20)

Starting from the microscopic description obtained before, we can now derive a mesoscopic
description characterized by the orientation distribution function ψ(x, t,p) and its associated
tensor a. The time derivative of the orientation tensor writes

ȧ =
ξ

ξ + µ
ȧJ +

µ

ξ + µ
ȧC − 4k ·

ξ

(ξ + µ)2 ȧE (21)

with ȧJ, ȧC and ȧE the resulting expressions
ȧJ = Ω · a − a ·Ω + D · a + a · D − 2 A : D
ȧC = W · a + a ·WT

ȧE = D̃ · a + a · D̃ − 2 A : D̃
(22)

A closure relation is needed in order to express the fourth order moment A as a function of the
lower order moments. Eq.3 shows that the cluster rotates with a velocity which only depends
on the second moment of its orientation distribution function a, so in order to consider a closure
relation as in [1], it seems suitable to propose obtaining D̃ just with the cluster rotatory velocity.
Considering then the quadratic closure relation, that is only exact when all the rods are locally
aligned in the same direction the fourth order moment results

A ≈ a ⊗ a (23)
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4. Numerical results

We consider a rod oriented initially along the direction pT = (cos θ, sin θ) immersed in a simple
shear flow characterized by an homogeneous velocity vT = (γ̇ · y, 0) field, with γ̇ = 1. At time t
the orientation of the rod will be given by θ and its rotational velocity by θ̇. The kinematics of
the rod are given by:

ṗ =
ξ

ξ + µ
ṗJ +

µ

ξ + µ
ṗC − 4k ·

ξ

(ξ + µ)2 ṗE (24)

then multiplying the first equation by − sin θ, the second one by cos θ and then adding both, it
results the rotary velocity of the rod θ̇

θ̇ =
ξ

ξ + µ
θ̇J +

µ

ξ + µ
θ̇C − 4k ·

ξ

(ξ + µ)2 θ̇
E (25)

Starting from θ=90 and whit values of ξ=1 and µ=1, an introducing a memory function of
duration=5s, the evolution of the angle θ of one fiber inside the cluster with the time with and
without the elasticity term is represented on Fig.2. It is observed that introducing the elastic
term slows down the rotatory velocity of the rod.

0 5 10 15 20
−500

−400

−300

−200

−100

0

100

an
gl

e 
θ 

(°
)

time (s)

 

 

Jeffery + Cluster
Jeffery + Cluster + Elasticity

Figure 2. Angle variation of a fiber.

Fig.3 shows the angle variation of a fiber when the elastic term is expressed in the n direction
(green line) and the p direction: first considering for the calculation of D̃ the global rotatory
velocity θ̇ (blue line) and second, just the rotatory velocity of the cluster θ̇C (red line). It is shown
that there is not a huge difference between the two ways of obtaining D̃, so the simplification
introduced in order to consider a closure relation is not changing the result of the model.

Finally, we compare the model (named model 1) obtained in section 2 and the model 2, which
is the one derived from the micromechanics. Now, an alternative step-shear is applied at 0.1s−1

and 1s−1. In Fig.4 it is observed that the time evolution of the components of the second order
moment a fit in a correct way.

It is also shown the evolution of the viscosity η with the shear rate γ̇ in both models. Being Np

the particle number, that only depends on the type and the concentration of particles considered,
the viscosity due to the presence of the aggregates writes

η = 2Np

[
ξ

ξ + µ
a2

12 +
µ

ξ + µ
a11(1 − a11)

]
(26)
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Figure 3. Angle variation of a fiber with elastic term in p and n direction
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Figure 4. Evolution of the component 11 and 12 of tensor a comparing the phenomenological model of section 2
(model 1) and the one derived from the micromechanics (model 2)
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Figure 5. Evolution of the viscosity comparing the phenomenological model of section 2 (model 1) and the one
derived from the micromechanics (model 2)

5. Conclusions

In this work we proposed a model derived from the microscale within the kinetic theory frame-
work we introduced physical effects as clustering, hydrodynamic forces and clusters’ elasticity.
From a physical point of view when the shear rate increases, aggregates can break. So more
complex scenarios should be considered in the model as the one implying aggregation mecha-
nisms.
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