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Abstract
The aim of this work is to develop an efficient micromechanical model to obtain the mechanical
properties of woven textile composites. In this model, we assume the configuration of the wo-
ven composite to be represented by an equivalent mosaic structure. The equivalent mechanical
properties of woven composites are obtained by the process ofhomogenization based on the mi-
cromechanics of the constituent material phases. Variational asymptotic method (VAM) is used
as the mathematical framework for the homogenization procedure. The geometry of the repeat-
ing unit cell (RUC) belonging to 3D woven composite is discretized into uniform grids/mosaics
using automated voxel technique. VAM is used to obtain the discrete governing equations valid
on each mosaic substructure of the 3D woven composite. Subsequently, properties for each
mosaic is determined based on the element of the geometry it holds within itself. The homoge-
nization procedure is applied on a 3D woven composite geometry for which the experimentally
tested properties are available in literature. The effects of grid refinement on the numerical
results obtained are evaluated against the experimentallytested values. It was found that refin-
ing the geometry captures the fiber undulations and leads to the convergence of the numerical
results towards the experimentally determined mechanical properties.

1. Introduction

Structural materials like unidirectional composites havebeen extensively used in engineering
applications over the last decade owing to their high specific stiffness. More recently, they are
being replaced by textile composites in varied industries as structural materials. This is due to
the enhanced stability of the textile composites in their warp and fill directions, balanced in-
plane properties, good impact resistance, etc. These textile composites come in woven, braided,
knitted and stitched forms. Their complex material architecture combined with other factors
that affect the thermomechanical properties of these materials make their characterization very
difficult and expensive. Additionally, analysis of structures made of woven composites also
becomes difficult because of the material intricacies at the microlevel.Addressing these chal-
lenges using traditional finite element method (FEM) based models that require careful and
detailed meshing of the structure, including its microlevel architecture details, are very time
consuming and computationally not viable. This has led to the development of micromechanics
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models that can give homogenized material properties, which can be used in structural level
analysis. The global structural analysis results can then be feedback into the micomechanics
model to determine the local fields of interest. This capability of micromechanics models is
especially important for the prediction of onset and evolution of damages in structures.

Central to all micromechanics models is the identification ofthe representative volume element
(RVE) or repeating unit cell (RUC), depending on the heterogeneous material of interest. Over
the years, numerous approaches have been proposed for the homogenization of RVEs/RUCs.
A comprehensive review of the micromechanics models developed before 1985 can be found
in [1]. Recent developments in micromechanics modeling are elucidated elaborately in [2].
In general, the micromechanics modeling strategies can be categorized as: (a) self-consistent
models; (b) variational approach based models ; (c) third-order bounded models; (d) method of
cells model; (e) recursive cell method models; (f) mathematical homogenization models; and
(g) FEM based models. A recent entrant into this category is the variational asymptotic method
unit cell homogenization (VAMUCH) technique. VAM was first used in the homogenization
of isotropic materials with cavities [3]. This was extendedby Yu and Tang in [4] to develop
the VAMUCH model to predict the homogenized effective properties of periodically heteroge-
neous materials. Here, the periodicity was considered as a small parameter and was used in
expanding the energy functional asymptotically to obtain avariational statement for the unit
cell. The minimization of this statement yielded the required governing equation and boundary
conditions. The numerical implementation was done using FEM which was effectively used
to solve sample problems. Later, VAMUCH was used in [5, 6, 7] topredict the effective ther-
moelastic, electromagnetoelastic and piezoelectric properties. These micromechanics models
were developed by the constrained minimization technique,beginning with the Helmholtz free
energy, total electromagnetic enthalpy and total electricenthalpy, respectively. VAMUCH has
also been used to optimize the periodic microsructure of thematerial in order to achieve the
prescribed effective properties [8].

An overview of the micromechanics techniques used in the homogenization of textile compos-
ites is given in [9]. In general, homogenization of textile composites has been attempted using
analytical [10] and numerical methods [11, 12]. However, analytical techniques become very
cumbersome when the material architecture is complicated and are not capable of accurately
predicting the local stress and strain fields. They are, however, simple and easy to implement.
Numerical methods are predominantly based on FEM, see reference [13]. FEM based homog-
enization techniques have been successfully used to determine the effective properties and, to
some extent, the local stress and strain fields in textile composites [14]. Most numerical tech-
niques require refined and carefull meshing of the unit cellsto accurately predict the local stress
and strain fields. For complex material architectures this become very time consuming, both
from the point of modeling and computation. The process of meshing can be overcome by
adopting a voxel based technique to autmoate the grid generation process [12]. Computational
efficiency can be improved by adopting VAMUCH framework.

This work is an attempt to develop a voxel based VAMUCH framework to homogenize textile
composites. The paper discusses the VAMUCH model followed bythe voxel based meshing
approach. Finally, the application of the model to homogenize textile composites and model
validation is presented.

2



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

2. VAM based unit cell homogenization of periodically heterogeneous materials

In this section a brief description of the VAMUCH model is given. The framework is based
on the model described in [4, 15]. Within this framework, periodicity of the heterogeneous
material is considered as a small parameter and a variational statement of the unit cell is formu-
lated through an asymptotic expansion of the energy functional. The variational statement of
the energy functional is solved using VAM to determine the relation between local and global
fields. FEM is used as the numerical tool to solve the problem.The methodology allows the
determination of the effective material properties without the use of multiple loadings. Further,
due to the variational structure of the problem the periodicboundary conditions are naturally
derived during the energy minimization process.

Following the steps described in [4, 15], the governing equations for the unit cell, which are
mosaic cells (see Fig. 1) are derived as,

∂

∂yl
Ci jkl (ǭi j + χ(i| j)) = 0 in Ω (1)

where,Ω is the domain;x1, x2 andx3 are used to describe coordinate system of the macroscopic
structure andy1, y2 & y3 are used to describe the unit cell. The dimensions of the unitcell along
x1, x2 andx3 directions are denoted byd1,d2 & d3, respectively. The material constitutive tensor
terms are denoted byCi jkl ; ǭi j are the average strain terms in the unit cell andχ(i| j) are the strain
terms due to the fluctuation function.

The periodic boundary conditions for fluctuation functionsare obtained as:

χi(x; d1/2, y2, y3) = χi(x;−d1/2, y2, y3) (2)

χi(x; y1,d2/2, y3) = χi(x; y1,−d2/2, y3) (3)

χi(x; y1, y2,d3/2) = χi(x; y1, y2,−d3/2) (4)

The periodic boundary conditions for the local stress are obtained as:

Ci jkl (ǭi j + χ(i| j)) |y1=d1/2= Ci jkl (ǭi j + χ(i| j)) |y1=−d1/2 (5)

Ci jkl (ǭi j + χ(i| j)) |y2=d2/2= Ci jkl (ǭi j + χ(i| j)) |y2=−d2/2 (6)

Ci jkl (ǭi j + χ(i| j)) |y3=d3/2= Ci jkl (ǭi j + χ(i| j)) |y3=−d3/2 (7)

also,
< χi >= 0 (8)

It may be noted that each of the layer/mosaic has a set of three differential equation to be
satisfied, which is stated below using Voigt’s contracted notation.

C11(
d2χ1

dy2
1

) +C66(
d2χ1

dy2
2

) +C55(
d2χ1

dy2
3

) + (C21+C66)(
d2χ2

dy1dy2
) + (C31+C55)(

d2χ3

dy1dy3
) = 0 (9)
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d2χ2
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C55(
d2χ3

dy2
1

) +C44(
d2χ3

dy2
2

) +C33(
d2χ3

dy2
3

) + (C13+C55)(
d2χ1

dy1dy3
) + (C23+C44)(

d2χ2

dy2dy3
) = 0 (11)

For 3D mosaic models solving above set of equations becomes difficult owing to the orthotropic
properties which make the coefficients vary from mosaic to mosaic in three dimensions. Hence,
numerical method is adopted to solve the problem. In order tosolve the coupled elliptic partial
differential equations with variable coefficients, FEM is used. The layer equations within an
element has constant coefficients and the elements can be assembled with periodic boundary
conditions applied at they1 − y3 andy2 − y3 plane of the model. It may also be noted that the
mosaic model does not capture the undulations of the fiber yarn at the level of discretization
used, which can result in larger values of homogenized properties along they1 − y2 plane and
reduced values along they3 direction properties. In order to avoid this problem the mosaic
model should be refined sufficiently.

We write the fluctuation functionχ in terms of the shape function, [N], and discrete nodal
variables,d, corresponding toχ as,

{χ} = [N].{d} (12)

The average strains are represented as,

ǭ =
[

ǫ11 2ǫ22 2ǫ33 2ǫ23 2ǫ13 2ǫ12

]T
(13)

The strain corresponding to the fluctuating functions are written as,
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= Γhχ (14)

The total strain energy is then re-written in terms of the average strains and the fluction functions
as,

πΩ =
1

2Ω

∫

Ω

Ci jkl [ǭi j + χ(i| j)][ ǭkl + χ(k|l)]dΩ (15)

The strain energy form in Eq. 16 is then written in terms of theshape functions and the nodal
variables by substituting Eqs. 12, 13 and 14 in Eq.15 to obtain,

πΩ =
1

2Ω

(

χTEχ + 2χTDheǭ + ǭ
TDeeǭ

)

(16)

where,E, Dhe andDee are given by

E =
∫

Ω

(ΓhN)TD(ΓhN)dΩ (17)

Dhe =

∫

Ω

(ΓhN)TDdΩ (18)
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Geometry Parameters Material Properties
a b h EL ET GLT νLT νTT

Units mm mm mm GPa GPa GPa - -
Values 2.0 2.0 0.196 137.3 10.79 5.394 0.26 0.46

Table 1. Woven Composite : Geometric Parameters & Material Properties

Dee=

∫

Ω

DdΩ (19)

The strain energy form given in Eq. 16 is minimized to get,

Eχ = −Dheǭ (20)

and
χ = χ0ǭ (21)

Based on the above mathematical statements the final energy stored in the unit cell is given as,

πΩ =
1

2Ω
ǭT
(

χT
0 Dhe+ Dee

)

ǭ ≡
1
2
ǭT
(

D̄
)

ǭ (22)

where,D̄ is the homogenized effective property.

3. Results and discussion

3.1. Geometry

As a verification problem, the experimentally tested woven composite from [16] made of car-
bon fibre reinforced plastic(CFRP) is considered. The geometric parameters and the material
properties from [16] is reported in Table 1. The RUC for the woven composites and its ide-
alization using a mosaic model is shown in Fig. 1. The geometeric parameters which govern
the effective properties are indicated as a, b and h. The cells have been numbered as 1, 2, 3,
4 for top layer in anticlockwise direction when viewed from+ve y3 axis. The bottom layer is
similarly numbered as 5, 6, 7 and 8. The mosaic model in exploded view (see Fig. 1) shows
the cell-1 separated from the rest of the model. It can be seenthat each cell is a transversely
isotropic fibre bundle element; where, the directionL is along the axial/longitudinal direction
and the transverse directions are denoted byT. It can be noted that they3 direction properties
for all the cells are the transverse direction (T) properties. However, the fluctuation functions
alongy1 andy2 directions does vary withy3 coordinates (note thex1 direction material variation
alongx3 direction for cells 1 & 5, 2 & 6 etc).

3.2. Voxelisation of Geometry

In order to keep the FE discretization independent of the geometry of the textile RUC, voxelisa-
tion is preferred over regular meshing in general purpose FEM pre-processors. This procedure
of voxelisation has following benefits.

• The procedure of discretization is simplified even if the geometry is complex.
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Figure 1. Woven Composite: 3D RUC

• The discretization procedure can be automated.

• Mesh refinement is easier.

• Multi level analysis becomes easier with sub voxelisation.

In the macro voxelisation, the RUC is divided into voxels. The macro-voxelised RUC is ho-
mogenized using VAM, hence this method provides recovery relation at the level of individual
voxels. In order to get the homogenized properties for each voxel, individual voxels are fur-
ther voxelised; this is referred to as micro voxelisation. At the micro level the homogenization
procedure can be simple stiffness averaging method or based on VAM.

3.3. Homogenization

The voxel model used in the analysis is shown in Fig. 2. A convergence study was done on
the homogenized properties and the converged results are compared with [16]. Comparative
results are tabulated in Table 2. The results compare closely with the tested and predicted
properties from presented in [16]. It may be noted that in [16] the undulations were modelled
using analytical functions using a different homogenization procedure from the one adopted in
this study. The results suggest that VAM in conjunction withmosaic based voxel model is an
effective yet simplified approach for the homogenization of complex 3D textile RUC.

A study on the variation of Young’s modulus, shear modulus and the Poisson’s ratio with the
geometric parameters,h/a, was also carried out. It is noted from the investigation that as the
geometric parameterh/a varies from 0.1 to 1.0 ( fibre bundle cross-section area is also increas-
ing), the Young’s modulus in the thickness direction shows only 6% drop where as the in-plane
Young’s modulus shows a significant drop of 37%. It may also benoted that as the geometric
parameterh/a varies from 0.1 to 1.0, the out-of-plane shear modulus increases from a value of
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Figure 2. Woven Composite:Voxel Model of 3D Weave

values Ex(GPa) Ey(GPa) Gxy(GPa) νxy

Test 48.3 48.3 5.41 0.062
Prediction [16] 46.35 46.35 3.83 0.0538

Present 46.76 46.76 3.89 0.0558

Table 2. Woven Composite: Tested Properties & Analytical Results vsVoxel Based VAM

3.3 GPa to 3.9 GPa and comes closer to the in-plane shear modulus (Gxy). Similar trends were
observed from the variation of Poisson’s ratio with respectto the volume fraction.

4. Conclusion

A voxel based variational asymptotic method unit cell homogenization procedure is developed.
The framework is capable of handling complex material architectures by avoiding the manual
mesh generation process. Voxel based method is automatic and is capable of accurately de-
scribing the local heterogenity in the material without theneed for fine grids; thus imrpoving
the computational efficiency of the model. The framework was used to determine the effec-
tive mechanical properties of 3D woven composites. Model predictions matched well with the
experimental results and confirmed the veracity of the framework.
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