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Abstract
This paper presents an analytical model for the stress analysis of a three phase fiber-matrix
composite system under thermo-mechanical loads. This cylindrical assembly consists of a fiber
embedded in a matrix having an interphase between them. Matrix and the interphase are re-
garded as an isotropic linear elastic material while the fiber is regarded as orthotropic linear
elastic continuum. Adopting a stress function approach and incorporating stress continuity con-
ditions at the interfaces as well as exactly satisfying traction-free boundary conditions, stress
fields in the entire assembly are expressed in terms of two unknown functions. Governing differ-
ential equations of the problem are obtained by using variational method in conjunction with
complementary energy principle and are numerically solved. The problem has also been com-
putationally studied using Abaqus FEA. This model enables prediction of pull-out capacity of a
single fiber composite system comprising an explicit interphase.

1. Introduction

Composites are an important class of materials which have a wide acceptance in different in-
dustries. The composite performance and properties will depend on the properties of the matrix
and fiber. During the fabrication process a third constituent, interphase, is formed between the
matrix and fiber. The interphases are formed as a result of the chemical and physical interaction
of the matrix and fiber. They have distinct properties from the parent materials [5]. They act as
the buffer therefore being responsible for the stress transfer between the matrix and fiber [7].

Over the last 50 years there was a big number of continuum mechanics model to describe the
stress transfer between the differernt constituent of the composites [4]. Those composites can
be considered as three phases system, fiber, matrix, and interphase, with averaged properties
[2] [1]. Big number of theoretical and numerical studies related the interphase properties to the
overall mechanical behavior of the composite [8]. As a simplification, many micromechanical
models regarded the interphase properties to be homogenous [3].

Different modeling techniques can be employed to obtain the stress fields; e.g., shear lag model
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[8]. Analytical model was developed based on a variational principle which minimizes the
complimentary energy of the composite system [6]. The analytical model was developed for
a system of fiber and matrix only, with homogeneous properties. The model is to be further
modified to account for the third member. This paper will be comparing the stress fields for a
composite with homogenous interphase for the analytical model against the results from the FE
model.

2. Axisymetric Model

In this study, we analyze the stress fields in a composite system comprising a single fiber em-
bedded in a matrix with an interphase in between. One end of the fiber is subjected to traction
σ0 and temperature change ’∆T’ and the other end of the matrix is fixed. b is the radius of fiber,
c the radius of interphase and d is the radius of matrix. The origin of the coordinate system
(r,θ,z) is at the top center, as shown in Fig. 1.

Figure 1: Schematic of the composite system subjected to thermo-mechanical load

2.1. Stress Functions

The analysis is started by assuming stress functions satisfying the axisymmetric equilibrium
equations:
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The stress function is assumed such that

φi = fi(r)gi(z) + hi(z) (2)

Where i =1 for fiber; =2 for interphase; =3 for matrix The stress components in the fiber,
interphase and matrix can be obtained from the following:
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When substituting the assumed function into the equilibrium equations in (1), the equilibrium
equations are indeed satisfied. Now plugging in equation (2) into (3),(4), and (5); we can write
the stress fields in the system as follows:

σ(i)
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(
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τ(i)
rz = − f ′i (r)g′i(z) (7)

σ(i)
rr = σ(i)

θθ = f ′i (r)g′′i (z) + h′′i (z) (8)

Note that there are 9 unknown functions, three for each member of the system. By using the
traction-free boundary conditions and the stress continuity at the interface, we can express all
the stress components both in fiber and matrix in terms of two unknown functions g1(z) and
g3(z).

2.2. Stress Fields in terms of g1(z) and g3(z)

Adopting a stress function approach and incorporating stress continuity conditions at the inter-
faces as well as exactly satisfying traction-free boundary conditions, stress fields in the entire
assembly are expressed in terms of two unknown functions

Along with the two unknown functions in the stress fields formulations there are two unknown
constants λ1,and λ3.

λ1 =
1

g1(0)
(9)

λ3 =
1

g3(L)
(10)
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3. Constitutive Models

The axisymmetric constitutive relationships are given in the following matrix. The properties of
the fiber are anisotropic but the properties of the matrix and interphase are taken to be isotropic.
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4. Energy Functional

In order to solve for the two unknown functions g1(z) and g3(z), we can minimize the total
complementary energy in the system.

Π∗ = U∗ + V∗ (12)

Where U∗ is the complementary strain energy and V∗ is the complementary potential energy.
Since we have a fixed boundary the complementary potential energy is zero.

The system of the three members is assumed to be linear elastic therefore the complementary
strain energy is:
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The system is axisymmetric which implies τrθ = τθz = 0 and in cylindrical coordinates dv =

rdrdθdz. Therefore the total complementary energy is:
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We use the stress fields obtained and the constitutive relationship in equation (14) then inte-
grate with respect to r to obtain, where the constant A1, A2, ..., A18 are a combination of loads,
dimensions, and properties of the composite. :

Π∗ = 2π
∫ L

0
Ψ(z, g1, g′1, g

′′
1 , g3, g′3, g

′′
3 , λ1, λ3)dz (15)

Where
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5. Solution Procedure

After constructing the functional Ψ(z, g1, g′1, g
′′
1 , g3, g′3, g

′′
3 , λ1, λ3)dz, the calculus of variation is

used to get governing equations. In the following equation (i) will represent 1 and 3 correspond
to g1(z) and g3(z), respectively.
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The first ODE is obtained from differentiating with respect to g1(z):

2A1λ
2
1g1 + 2A2λ

2
1g1g′′1 + A3λ1λ3g3 + A4λ1λ3g′′3

+A5λ1 − 2A6λ
2
1g′1 − A7λ1λ3g′3 + 2A8λ

2
1g′′′′1

+A9λ1λ3g′′3 + A10λ1λ3g′′′′3 = 0
(18)

Similarly, the second ODE is obtained from differentiating with respect to g3(z).

Solving the unknown λ1 will require differentiating the functional (16) with respect to λ1 then
setting the equation equal to zero to yield the optimal value of λ1.
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Similar procedure is followed for λ3.

There are eight boundary conditions needed to solve the two ODEs and they are:

g1(0) =
1
λ1

; g1(L) = 0; g′1(0) = 0; g′1(L) = 0; (20)
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Fiber Interphase Matrix
Er(MPa) 5,000 3,000 1,000
Eθ(MPa) 5,000 3,000 1,000
Ez(MPa) 10,000 3,000 1,000

νrθ 0.4 0.35 0.3
νθz 0.3 0.35 0.3
νrz 0.3 0.35 0.3

Grz(MPa) 1,923 1,111 385
αr(1/C0) 26e−6 51e−6 76e−6
αθ(1/C0) 26e−6 51e−6 76e−6
αz(1/C0) −0.26e−6 51e−6 76e−6

Table 1: Properties of the composite

g3(0) = 0; g3(L) =
1
λ3

; g′3(0) = 0; g′3(L) = 0; (21)

Now we solve the two ODE along with the two integro-differential equations and we need to
solve them simultaneously to obtain functions g1(z) and g3(z) and their derivatives. Matlab pro-
gram bvp4c is used to solve for the two ODEs. Note that at first we would need to approximate
the values of λ1 and λ3 , since we need them to solve the ODEs, then iterate until their values
converge. Using g1(z) and g3(z) and their derivatives stress fields in the entire axisymmetric
systems can be obtained.

6. Results and Discussion

6.1. Dimensions, loads, and properties

The length of the fiber under consideration is 0.5 mm, similarly the length of the interphase
and matrix. The fiber has a radius of 0.005 mm and radius of the matrix, which is assigned the
letter d in Fig.(1), is 0.1 mm. The ratio of the interphase thickness to the fiber radius considered
is 0.2. The traction, σ0 , applied the fiber top is 100 MPa. The temperature difference in the
system is ∆T = −100C0.The Properties of the fiber, interphase, and matrix are shown in table
(1).

6.2. Analytical and FE model results

In order to verify the analytical model, first we are going to compare it to the results obtained
from the FE model. The comparison will take place at the two interfaces, at b and c. The values
to be compared are σzz, τrz, and σrr. Note σθθ was not considered because in the analytical
formulation it is assumed to equal to σrr . The mentioned assumption is valid because even in
the FE model the values are about the same. From Fig.(2) to Fig.(5) the analytical results and
FE model results have similar behavior with a small difference in magnitude.

6



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

z

L

τ
r
z

σ
o

Fiber and Interphase
b
, σ

o
=100 MPa, r=0.005 mm

 

 

Analytical
FE

Figure 2: Shear stress along the length of the
interface, at b
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Figure 3: Shear stress along
the length of the interface, at
c
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Figure 4: Radial stress along the length of the
interface, at b
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Figure 5: Radial stress along
the length of the interface, at
c
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7. Conclusions

Stress fields in an axisymmetric composite system comprising explicit homogeneous interphase
have been analytically obtained by a variational method in conjunction with principle of com-
plementary energy. Interfacial and interphasical shear and radial stress peaks predicted by the
analytical model are in good agreement with FE results.
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