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Abstract
The Glass or Carbon Fibers Reinforced Polymer (GFRP/CFRP) age when they are immersed in
humid environment. The study of the moisture diffusion process in composite material is crucial
to predict the long-term behavior of the structure. In this work, a comparison between the Fick
model and the Langmuir one, representing differently the diffusion process at the microscale,
is proposed through a numerical transient uncoupled hygro-elastic analysis. Effects of random
fibers distribution on both water diffusion and mechanical states are also discussed.

1. Introduction

Nowadays, composite materials made of Glass or Carbon Fibers Reinforced Polymer (GFR-
P/CFRP) are widespread in a lot of industrial applications due to economic and energy purposes.
The marine industry is no exception. The undeniable advantages of those composite materials
led to a fast expansion of these materials in transport and energy applications. Indeed, they
present good specific mechanical properties leading to a mass gain which conduct to a lower
fuel consumption and better efficiency. Moreover, they have good fatigue damage resistance
and can be easily repaired. Although GFRP and CFRP present many advantages, it is neces-
sary to study the aging of the composite material submitted to a humid environment, in order
to predict their durability. For such material, it is known that the polymeric resin (polyester,
epoxy, etc.) constituting the matrix used in GFRP is hydrophilic whereas the reinforcements
can be considered as hydrophobic. Moisture absorption yields a hygroscopic swelling of the
matrix which, coupled to the contrast between the mechanical properties of each phase, induces
internal stresses within the composite. Those stresses are added to the ones induced by external
forces leading to a decrease of the sustainability of the material, and thus disrupt the behavior
of the structure. It is thereby important to quantify the hygroscopic induced stresses in order to
predict the long-term behavior of the structure. In this paper, a numerical transient uncoupled
hygro-elastic analysis is performed in order to quantify these phenomena. The study is per-
formed at the microscale where the geometrical details of the heterogeneous material appear.
For the considered material, the distribution of the fibers is usually not regular [1] and a random
generator is thus used to create geometries of the microstructure when one wants to consider
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Figure 1. Model problem.

a high volume fraction of reinforcements. Two diffusion models are considered: the classical
Fick’s law and the Langmuir’s model which assumes that absorbed moisture consists of mobile
and bound phases. Such an enriched model may help to represent a wider range of diffusion
processes and thus allows a better description of the investigated physical phenomena. The re-
sulting time-dependent hygroscopic strain field is then used to evaluate the deformation of the
material considering a linear elastic assumption.

2. Problem formulation

2.1. Diffusion problem

We consider an heterogeneous material, schematically depicted on figure 1, which occupies
a spatial domain Ω = Ωm ∪ Ωr ∈ Rd with d ∈ {1, 2, 3} and where Ωm and Ωr respectively
represent the polymer matrix and the reinforcements. We denote by c(x, t) the moisture content
of a material point, characterized by its position through vector x, at time t. This moisture
content c(x, t) is defined by

c(x, t) =
mw(x, t)
m0(x)

, (1)

where mw(x, t) is the local increase in mass of water and where m0(x) is the local mass at
the initial time. The spatial average moisture content c(t) can be obtained with the following
relation

c(t) =
1

M0

∫
Ω

ρ(x) c(x, t) dΩ, (2)

where ρ(x) is the local density and M0 is the mass of the sample at initial time. In the following,
c(t) will also be referred as the macroscopic moisture content. From an experimental point of
view, using the knowledge on M0 and the mass M(t) at time t of the sample which occupies Ω,
c(t) is evaluated using the following relationship

c(t) =
M(t) − M0

M0
=

Mw(t)
M0

, (3)

where Mw(t) represents the increase in mass of water within the sample with respect of M0.
From now on, all equations will be written according to the local moisture content c(x, t). In
this work, we assume that the diffusion process is governed by a unique diffusion coefficient D
in each spatial direction. Moreover, since the fibers are considered hydrophobic, the problem
may be only formulated on the domain Ωm. This remark is true for both models which are
briefly exposed in the following.
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2.1.1. Fick diffusion model [2]

The Fick law is a common model to represent a diffusion process where the all water molecules
are free to move in the polymer network associated with domain Ωm. Since the diffusivity is
assumed constant (i.e. independent of moisture content or mechanical states), the Fick local
diffusion problem writes: find the solution field c(x, t) such that it verifies

∂ c(x,t)
∂ t = D ∆c(x, t) on Ωm,

c(x, t) = cimp on Γc,
(4)

where cimp is a given moisture content applied on a part Γc of boundary ∂ Ω.

2.1.2. Langmuir diffusion model

In [3], the authors have proposed to divide the water molecules in two populations. The first
n(x, t) is free to move while the molecules of the second phase N(x, t) are bonded to the polymer
network due to reversible chemical reactions. A free water molecule could become a bonded
one with a frequency α while a bonded molecule could be freed with a frequency β. The total
moisture content c(x, t) naturally verifies

c(x, t) = n(x, t) + N(x, t). (5)

The Langmuir local diffusion problem writes: find the solution fields n(x, t) and N(x, t) such
that they verify

∂ n(x,t)
∂ t +

∂ N(x,t)
∂ t = D ∆ n(x, t) on Ωm,

∂ N(x,t)
∂ t = α n(x, t) − βN(x, t) on Ωm,

n(x, t) = nimp on Γc,

N(x, t) = Nimp on Γc,

(6)

where nimp and Nimp are respectively the imposed free and bounded moisture content on Γc.
Considering those two different populations, the Langmuir model is able to represent a wider
class of diffusion phenomena. In particular, delay or, in contrary, fast absorption, at early in-
stants of diffusion can be simulated with this model.

2.2. Mechanical problem

We focus on the analysis of the deformation of the material submitted to local moisture content
c(x, t) that occupies the domain Ω under small perturbations assumption. Planes strains are
assumed. We denote by u(x, t) the displacement field, ε(u(x, t)) the strain tensor and by σ(x, t)
the stress tensor. Both glass fibers and the polymeric resin are assumed to be linear isotropic
elastic materials represented by the fourth order stiffness tensor C verifying

C(x) =

{
Cm if x ∈ Ωm

Cr if x ∈ Ωr
, (7)

where Cm and Cr are constant tensors. Moreover, we denote by βh the hygroscopic expansion
coefficient which is here considered identical in each direction. The hygroscopic expansion may
be represented by a diagonal tensor βh whose diagonal components are equal to βh. βh is equal
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to 0 for the hydrophobic reinforcements. Finally the quasi-static linear elastic problem writes:
find the displacement field u(x, t) such that

div (σ(x, t)) = 0 on Ω,
σ(x, t) = C(x) :

[
ε(u(x, t)) − βh c(x, t))

]
on Ω,

u(x, t) = uimp on Γu,
(8)

where uimp is the imposed displacement on the part Γu of ∂Ω, c(x, t) is the solution field of
either problem (4) or problem (6).

3. Numerical aspects

3.1. Space and time discretization and resolution

Diffusion problems (4) and (6) and linear elastic problem (8) are solved using the classical Finite
Element Method (FEM). At the spatial level, the discretization is done using a finite element
mesh composed of 3-nodes elements associated with linear interpolation functions. At the
time level, we use a backward Euler integration scheme. In practice, User Element dedicated
to problems (4) and (6) were implemented in the software AbaqusTM allowing the use of its
spatial and time solvers. Verifications and convergence analyses, based on analytic solutions
[2, 3], were carried out in order to ensure the validity of the implementation.

3.2. Generator of random geometries

A good representation of the regarded industrial materials leads to consider a high volume frac-
tion νr of the non penetrating reinforcements. Besides, a regular distribution of the fibers seems
unlikely and a random generator is then needed to create realistic geometries of the microstruc-
ture. Generators based on a rejection process of the fibers are hard to use since the targeted
volume fraction is high. We thus use a specific procedure to circumvent this issue whose start-
ing point is a regular (i.e. periodic) disposition of the fibers within the microstructure. The
radius of the cylindrical fibers is deterministic and only their positions are disturbed with a pro-
cedure based on elastic shocks where the radial and tangential velocities, associated with each
fiber, are independent random variables. Such a technique allows obtaining the desired random
geometries with low computational times.

4. Numerical applications

4.1. Material properties

The matrix is an epoxy based resin hardened by an aliphatic polyamine [4]. The diffusion pa-
rameters (cf. Table 1) for both Fick and Langmuir models come from a minimization problem
aiming at finding the optimal diffusion parameters in a least-square sense. We thus seek to mini-
mize the distance between the experimental data available in [4] and the analytic solutions given
in [2] for the Fick model and in [3] for the Langmuir model. In order to use those solutions, we
assume that the diffusion is unidirectional within the matrix which is also considered as an ho-
mogeneous material at this scale. Figures 3(a) and 3(b) illustrate the absorption curves obtained
with the identified parameters of each diffusion model. It can be seen on Figure 3(a) that the
two models give very close results. Differences can however be observed on Figure 3(b) at the
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Figure 2. Geometry of microstructures (periodic and random) studied in this work, with boundary conditions for
the diffusion and the mechanical problem.

(a) (b)

Figure 3. (a) Average water content c according to
√

t in a pure resin sample: experimental data (squares), Fick
identification (circles) and Langmuir identification (crosses). ∆ (dotted line) is the relative deviation between Fick
and Langmuir models. (b) Focus on the first instants.

very first instants of the diffusion process. According to the experimental data, the Fick model
clearly overestimates the water content unlike the Langmuir model which better reproduces the
diffusion in the beginning of the process. The hydrophobic reinforcements are made of glass.
Table 1 presents the mechanical properties for each materials. E is the young modulus and ν is
the Poisson’s ration.

4.2. Geometries of microstructure

In this work, the water absorption by the edges may be neglected due to the samples dimensions:
130 mm × 130 mm × 2 mm. This lead to a symmetrical diffusion problem. For computational
resources considerations, only a slice of the superior half of the sample is numerically repre-
sented where h = 1.0 mm and w = 0.21 mm (cf. Figure 2). Furthermore, the glass fibers are
cylindrical with a fixed diameter of 18 µm. In order to be representative of naval applications,
the mass fraction of reinforcement is close to 70 % inducing a volume fraction of νr ≈ 53.3 %.
Five different geometries are considered: one periodic and four others obtained with the ran-
dom generator described in section 3.2. The geometries of microstructure used in the numerical
simulations are shown in Figure 2.
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Fick Langmuir
D (mm2/s) 1.47 × 10−6 4.14 × 10−6

C∞ (%) 2.28 2.28
α (s−1) X 8.76 × 10−5

β (s−1) X 5.34 × 10−5

Matrix Reinforcements
ρ (Kg/m3) 1220 2540
E (MPa) 2700 72500

ν 0.35 0.22
βh

x = βh
y 0.001 0.0

Table 1. Tables of diffusion parameters for each model and mechanical properties for each material.

Figure 4. Stress fields σyy in the top right-hand corner of the five geometries obtained with Fick and Langmuir
models at t = 1 h.

4.3. Initial and boundary conditions

Samples are initially considered dry involving a zero moisture content within the matrix. The
imposed moisture content cimp applied on Γc is taken equal to the maximum moisture content C∞

(cf. Table 1). Symmetry conditions are used for the mechanical problem leading to decompose
Γu into ΓuX (symmetry along X-axis) and ΓuY (symmetry along Y-axis).

5. Results and Discussion

5.1. Local behavior

Figure 4 illustrates the σyy stress fields in the top right-hand corner of each geometry (cf. Figure
2) at t = 1 h which is representative of the transient part of the diffusion process. For all geome-
tries, the Fick model leads to higher predicted local stresses. Those differences are explained
by the mismatch of moisture content fields obtained with Fick and Langmuir models. The local
moisture content is indeed higher with the Fick model for two combined reasons. Firstly, all
the water molecules participate to the diffusion process with this model. Secondly, the sorption
curve identified with the Fick model leads to a faster diffusion in the matrix during the first
instants (cf. Figure 3(b)). Besides, we also notice a geometrical influence on the stress fields.
For instance, the difference between the maximum local stresses obtained with each model are
enhanced when the fibers are randomly distributed (3 MPa for the periodic case and 18 MPa for
the Random3 case). Figure 5 presents the stress fields σyy when the steady state is reached for
each geometry. The geometry clearly impacts the local stresses for which significant discrep-
ancies can be observed. Since we only use an uncoupled hygro-elastic model, both diffusion
models lead to the same moisture contents and stationary stresses fields. However, adding a
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Figure 5. Stress fields σyy in the top right-hand corner of the five configurations at steady state.

coupling between the diffusion and mechanical models [5] and/or a local mechanical model,
such as a damage model [6], could affect this observation. Further works will be devoted to the
investigation of such local couplings.

5.2. Global behavior

(a) (b)

Figure 6. (a) Average water content c(t) with respect to
√

t according to either Fick and Langmuir diffusion models
and for Periodic and Random3 configurations. (b) Highlight on the first instants.

We now focus on spatial average quantities. Figure 6 shows the evolution of the average content
c(t) obtained with both models and for two geometries: Periodic and Random3. We can observe
that both models conduct to very close results. Only small differences comparable to the ones
observed for the matrix diffusion behavior, cf. figure 3, appear. Moreover, changes in the
geometry have small effects on the evolution of the average moisture content. We finally analyze

Figure 7. Mean stress inside the matrix σm
yy and the reinforcements σr

yy with respect of
√

t for the five geometries.
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the spatial average stress within the matrix and the reinforcements respectively denoted by
σm

yy and σr
yy. Figure 7 thus presents the evolution of σm

yy and σr
yy according to

√
t for each

geometries. For the sake of clarity, only results obtained from the Fick model are plotted since
the Langmuir model gives close results. Firstly, it is worth noting that the matrix phase is in a
global compression state when the fibers are in a global traction state. Secondly, it is important
to highlight the deviation between the different geometries. In particular, the Periodic case
presents a maximum relative deviation of 30 % corresponding to a gap of ≈ 1.5 MPa. This
indicates that a more precise analysis of the effect of the distribution of the fibers is needed.

6. Conclusion

We have proposed a transient uncoupled hygro-elastic analysis of a polymer resin reinforced
with hydrophobic glass fibers. The Fick and Langmuir diffusion models have been compared
through numerical simulations. Using a dedicated random generator, effects of the geometrical
distribution of the fibers have also been discussed. Analyses on both local and global quantities
have shown discrepancies between the two models during the transient part of the moisture
diffusion process whereas only the geometry affects the steady state results. Further works will
be devoted to (i) analyze diffusion-mechanical couplings and (ii) use scale transition methods
to take into account microscopic details at a much higher scale.
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