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Abstract 
In this work, a two-dimensional optical permeability measurement system is analyzed with 
respect to the statistical uncertainty associated with the permeability values. The optical 
system as well as stochastic material properties and experimental parameters are 
incorporated in the analysis. Two well-known mathematical algorithms are compared by 
studying the influence of the individual stochastic parameters on the permeability values. For 
that purpose, artificially created sets of noisy data have been created and Monte-Carlo 
experiments have been carried out. The results obtained are finally compared. 
 
1. Introduction 
 
In liquid composite molding (LCM) techniques, dry preforms of reinforcing fabrics are placed 
in a mold and then impregnated with the liquid polymer matrix material. The impregnation 
process plays a key role as insufficiently saturated regions directly affect the mechanical 
properties of the final component. In order to avoid elaborate and expensive impregnation 
trials, filling simulations can be accomplished. These simulations strongly rely on accurate 
and trustworthy permeability values.  
 
A well-known approach to determine 2-dimensional permeability values of reinforcing fabrics 
is based on optical observations of radial flow experiments as introduced by Adams et al. [1]. 
There, a three-stage procedure has to be followed: (1) acquisition of an image sequence 
during the actual experiment, whereas the flow front of the saturated fabric shows an elliptic 
shape in the general case, (2) evaluation of the sequence images to determine the timely 
advancement of the flow front, i.e. the major and minor axes lengths of an elliptic geometry 
model approximated to the actual flow front, and (3) calculation of the in-plane permeability 
values [2] from these characteristics following a specific mathematical algorithm. 
 
Actually, a couple of different algorithms for the computation of the permeability values are 
reported in the literature. The best known approaches are those of Adams and Rebenfeld [3] 
on the one hand and Chan and Hwang [4] on the other hand. In this work, a comparison of 
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these algorithms with respect to their particular impact on the uncertainty of the finally 
obtained permeability values is presented. Thereby, repeatability analyses following the 
Monte-Carlo approach are shown. In this sense, this paper represents a continuation of works 
previously published by the authors [5,6]. 
 
2. Basics and Background 
 
2.1. Darcy’s Law and the 2D-Permeability Tensor 
 
The process of impregnating a dry preform of reinforcing textiles with liquid matrix material 
can be understood as saturating a porous structure with a viscous liquid. Following Darcy’s 
law [2], the flow characteristics can mathematically be described according to: 
 

v
1
η
K p. (1)

 

Therein, the fluid flow velocity vector v	  is related with the driving pressure 

gradient p	
	
	through the fluid viscosity η	 	

 and the permeability of the reinforcing 

structure, described by the permeability tensor K	 m . For planar investigations, the 
permeability tensor is a 2	x	2 matrix. By choosing an appropriate coordinate frame (or by 
application of a coordinate transformation), the primary flow directions can be aligned with 
the coordinate frame of the measurement system resulting in the simplified tensor: 
 

K
k 0
0 k , (2)

 
with k  and k  denoting the permeability values along the primary flow directions. 
 
2.2. Determination of Permeability Values 
 
Basically, permeability measurement is accomplished in a two-step procedure [7]: 

1. the actual saturation experiment, i.e. determination of the timely advancement of the 
fluid impregnating the reinforcing structure, and 

2. calculation of the permeability tensor components from these characteristics following 
a specific mathematical algorithm. 

For the calculation of the permeability tensor components by means of the timely 
characteristics of the flow front advancement, a number of different approaches are reported 
in the literature. All of these algorithms share the need for finding a solution of the second-
order differential equation describing the 2-dimensional pressure distribution p x, y  of the 
fluid impregnating the anisotropic reinforcing structure: 
 
∂ p
∂x

α
∂ p
∂y

0. (3)

 

Thereby, α 	denotes the degree of anisotropy of the reinforcing structure. Adams and 

Rebenfeld [8] presented an algorithm, which is based on an iterative numerical solution for 
the degree of anisotropy α. Chan and Hwang [4] on the contrary described an approach which 
introduces a transformation of the anisotropic problem into an equivalent isotropic system 
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(EIS). Thereby, the second-order differential equation simplifies to the well-known Laplace 
equation [2,9,10], for which a closed form solution exists. The resulting isotropic permeability 
is finally transformed back to the anisotropic system in order to obtain the desired values for 
k  and k , respectively. 
 
3. Optical Permeability Measurement 
 
3.1. Measurement Principle 
 
The basic principle of the optical permeameter measurement system investigated in this work 
has originally been presented by Adams et al. [1] and is termed “radial flow experiment”. In 
Figure 1, a scheme of the setup is shown. The measurement system consists of a mold which 
is composed of a metal bottom half and a top half built from a glass plate. In between the two 
halves of the mold, a metal frame with distinct thickness is positioned. The latter component 
is termed “cavity frame”, as its inner cutting dimensions and thickness specify the mold 
cavity, i.e. the volume to be filled with the fluid during the experiment. 
 

 
Figure 1: Scheme of an optical permeability measurement system with its major hardware components. 

 
For the actual experiment, layers of the reinforcing textiles are placed inside the cavity, which 
is subsequently filled with a liquid through a central injection point in the metal bottom half 
of the mold. During the radial flow experiment, an image sequence is acquired with a camera 
system positioned above the mold. The camera focusses through the glass plate onto the upper 
surface of the reinforcing textiles placed inside the cavity. By analysis of the acquired 
sequence images, the timely advancement of the fluid flow front can be determined. 
 
3.2. The Test Rig 
 
Figure 2 shows a picture of the test rig used for the radial flow experiments in this paper. The 
frame of the test rig is set up by standard aluminum profiles. Directly on top of the working 
table, the metal mold half is mounted. The security glass plate forming the upper mold half is 
made from two glass plates, each with 19	mm in thickness, separated by a 0,76	mm thin 
polymer foil. The glass mold half is framed with metal profiles in order to connect it to a 
hinge system on the back side of the test rig. A pneumatic cylinder finally provides for the 
flapping motion. 
 
The actual mold cavity is specified through the cavity frame showing an inner dimension of 
300	mm	x	400	mm. After placing the reinforcing structures inside the cavity, the mold is 
closed by flapping the glass plate into a horizontal position. In addition, the glass plate is 
tightened with the bottom mold half using a metal clamping frame and a set of screws. The 
radial flow experiment is then executed by injecting the test fluid into the cavity through a 
central injection point in the metal bottom mold half. Due to the thickness of the glass plate 
and the clamping frame used to tighten the glass plate, a maximum injection pressure of 6	bar 
can be applied. 
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Figure 2: Optical permeability measurement system used for the radial flow experiments. 

 
At a distance of about 1	m above the mold, a camera system consisting of an industrial 
monochrome camera and a precision lens with a focal length of 16	mm is mounted. The 
camera is used to acquire an image sequence during the radial flow experiment at an 
acquisition rate of up to 50	fps at a resolution of 1392	x	1040	pixel. In order to determine the 
timely advancement of the fluid flow front, the sequence images are evaluated by means of a 
digital image processing algorithm specifically developed for this application [5]. The 
algorithm results in an elliptical geometry model (see Figure 3). Thus, the timely flow front 
advancement is finally obtained in terms of the major and minor axes length characteristics. 
 

 

Figure 3: Example of a sequence image with an overlay of the elliptic geometry model fitted to the set of data 
points found along the fluid flow front. 

 
The test rig control task as well as the image and data acquisition, evaluation and storage tasks 
have been implemented in a LabVIEW® application. Thereby, the sequence images are 
evaluated online, i.e. at the same rate as the images are acquired. As a result, the timely flow 
front advancement is available immediately after finishing the radial flow experiment and the 
mathematical computation of the permeability tensor components can be accomplished 
instantaneously. 
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4. Experimental Work 
 
Permeability values show a significant level of uncertainty with major contributions from 
inhomogeneities in the reinforcing materials [11,12]. Nonetheless, the measurement system 
itself also accounts for a certain portion. In order to estimate the contribution of the optical 
measurement system on the uncertainty associated with the resulting permeability tensor 
components, a repeatability analysis has been carried out. The analysis is based on a single 
radial flow experiment. After placing the layers of reinforcing materials inside the mold 
cavity, the fluid injection has been started together with the acquisition of the image sequence. 
During the timely advancement of the flow front, the fluid injection has been interrupted at 
certain stages of the experiment (see Figure 4). However, the acquisition of the image 
sequence has been pursued and as a result, the radial extent of the elliptic flow front has been 
acquired virtually at repeatability conditions during these stages of interrupted fluid injection. 
The fluid injection has been interrupted five times during the experiment and for all of the 
five sections a number of about 800 images has been acquired and evaluated. The major and 
minor axes lengths r  and r , have subsequently been analysed by means of Lilliefors 
tests [13] in order to verify that their statistical nature follows Gaussian probability density 
functions. 
 

 
Figure 4: Timely advancement of the flow front in the radial flow experiment with interrupted fluid injection. 

 
The corresponding standard deviation values slightly increase with the flow front extent 
advancing during the experiment. However, for the uncertainty analysis described in the 
following section, the standard deviation values have been assumed to be constant over the 
entire measurement space. Table 1 gives an overview of the incorporated data. 
 

Measurement values Symbol Standard dev. Remark 

Major radial extent r  0,175 mm Results of a statistical analysis as reported by 
the authors in [5]. Minor radial extent r  0,080 mm 

Time t - 
The timestamp values representing the image 
acquisition time are assumed to be 
deterministic 

Table 1: Measurement values obtained for and incorporated in the uncertainty analysis. 
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5. Uncertainty Analysis 
 
5.1. Parameter Identification 
 
The basis for the uncertainty analysis presented in this paper has been set with the 
identification of parameters contributing to the uncertainty associated with the permeability 
values k  and k  of an anisotropic reinforcing structure. In Table 2 the experimental 
parameters incorporated in the analysis are listed. 
 
Experimental 
parameter  

Symbol 
Nominal 
value 

Standard 
deviation 

Remark 

Fluid viscosity η 65 mPas
0,25% of the 
nominal value 

Precision of the rheological 
measurement device 

Injection pressure Δp 1,6 bar
1% of the 
nominal value 

Precision of the pressure control 
valve used in the test rig 

Injection radius r  6,5 mm
1% of the 
nominal value 

Estimation based on assumed 
imperfectness of the machined part 

Cavity height h 5 mm
1% of the 
nominal value 

Estimation based on assumed 
imperfectness of the machined part 

Table 2: Experimental parameters incorporated in the uncertainty analysis. 
 
Moreover, the material of the reinforcing structure - a biaxial non-crimped carbon fibre fabric 
with polyester stitching yarn - is incorporated in the analysis by means of two uncertain 
properties as listed in Table 3. 
 

Material properties  Symbol 
Nominal 
value 

Standard 
deviation 

Remark 

Material density 
(Carbon) 

ρ 1,78
g
cm³

1% of the 
nominal value 

Estimation based on assumed 
imperfectness of the manufacturing 
process for carbon fibers (chemical 
impurities) 

Areal weight m  565
g
m²

5% of the 
nominal value 

Uncertainty as stated in data sheet 
of the biaxial non-crimped carbon 
fibre fabric 

Table 3: Properties of the reinforcing material incorporated in the uncertainty analysis. 
 
5.2. Uncertainty propagation 
 
Following Clarke [14], uncertainty propagation can be addressed either by means of a 
statistical approach or an analytical approach. The statistical approach - also known as Monte-
Carlo experiment - makes use of the law of large numbers [15], i.e. given a sufficiently high 
number of samples, the covariance can directly be computed using statistical relations. 

The uncertainty associated with the material properties and the experimental parameters on 
the one hand as well as the uncertainty determined for the measurement results of the optical 
permeameter on the other hand has been propagated to the uncertainty associated with the 
permeability values k  and k  of an anisotropic reinforcing structure. For that purpose, 
Monte-Carlo experiments have been carried out, i.e. the evaluation algorithms have been 
executed on n 10  artificially created sets of noisy data. In Table 4, the results of the 
uncertainty analysis are listed for the two evaluation algorithms. 
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rx 100 .. 350 mm 0,175 mm 1,45E-10 1,64E-14 0,01 1,70E-10 3,18E-14 0,02

ry 100 .. 250 mm 0,080 mm 6,44E-11 1,02E-14 0,02 7,61E-11 9,92E-15 0,01

1,45E-10 1,94E-12 1,34 1,70E-10 1,72E-12 1,01
6,43E-11 8,58E-13 1,33 7,61E-11 7,69E-13 1,01
1,46E-10 9,60E-12 6,58 1,70E-10 8,48E-12 4,99
6,44E-11 4,25E-12 6,60 7,60E-11 3,79E-12 4,99

1,45E-10 3,69E-13 0,25 1,70E-10 4,28E-13 0,25
6,44E-11 1,63E-13 0,25 7,60E-11 1,91E-13 0,25
1,45E-10 1,44E-12 0,99 1,70E-10 1,71E-12 1,01
6,44E-11 6,39E-13 0,99 7,61E-11 7,62E-13 1,00
1,46E-10 4,43E-12 3,03 1,70E-10 4,99E-13 0,29
6,44E-11 1,96E-12 3,04 7,61E-11 2,24E-13 0,29
1,45E-10 1,92E-12 1,32 1,70E-10 1,69E-12 0,99
6,43E-11 8,52E-13 1,33 7,61E-11 7,57E-13 0,99

1,45E-10 1,10E-11 7,59 1,70E-10 9,01E-12 5,30
6,44E-11 4,86E-12 7,55 7,61E-11 4,02E-12 5,28

1,00 %

all

cavity height h 5 mm

%

0,25 %

injection 
pressure

Δp 1,6 bar 1,00 %

injection radius r0 6,5 mm 1,00

viscosity

1,00 %

areal weight mA 565 g/m² 5,00 %

radial extent

density ρ 1,78 g/cm³

65 mPas

Chan and Hwang Adams and Rebenfeld

Parameter Symbol
Nominal

value
Standard 
deviation

Stochastic parameters
Results of Monte-Carlo experiment (104 runs)

/ 
[%] 

/ 
[%] 

 
Table 4: Results of the uncertainty analysis based on Monte-Carlo experiments. 

 
5.1. Comparison of Results 
 
When comparing the average permeability values of k  and k  obtained with the two 
algorithms, a deviation of about 15% can be observed. This is a result of the strongly 
deviating nature of these two computational algorithms: Adams and Rebenfeld propose an 
iterative numerical solution for the degree of anisotropy, where Chan and Hwang follow an 
analytical approach based on an equivalent isotropic system (EIS). 
 
However, the more interesting facets can be discussed when comparing the effects of the 
individual stochastic parameters on the uncertainty of the permeability values. The results 
obtained with the algorithm of Adams and Rebenfeld show that the relative uncertainty (i.e. 
the ratio of standard deviation to nominal value) of the stochastic parameters is directly 
mapped to the permeability values. This can easily explained as the stochastic parameters 
contribute linearly to the permeability values. The only exception can be seen for the 
stochastic injection radius r . Given a relative uncertainty of 1% for r , a relative uncertainty 
of about 0.3% is obtained for k  and k . By contrast, the algorithm of Chan and Hwang 
causes a relative uncertainty for  and  of about 3% in this situation. This can be explained 
by the fact that r  contributes quadratically to the equivalent isotropic permeability  in 
their algorithm, thus causing a high sensitivity of the permeability values on r . 
 
6. Conclusions 
 
The uncertainty values obtained with the algorithm of Chan and Hwang are consistently 
higher than the corresponding uncertainty values obtained by the algorithm of Adams and 
Rebenfeld. This is specifically true for the stochastic injection radius, which is a critical 
parameter when preparing the preforms for the radial flow experiments. The results obtained 
in this analysis lead to the proposal to follow the algorithm of Adams and Rebenfeld when 
computing planar permeability values from the characteristics of the timely flow front 
advancement in radial flow experiments. However, an extension of this work studying the 
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systematic deviations of the results obtained with these algorithms is an open issue for future 
work. 
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