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Abstract 

The complexity of 3-D composites microstructure leads to the difficulty on the analysis. 

However, the microstructure can be idealized such that possesses a periodic pattern, which 

enables composites structure to be effectively and efficiently analyzed by using asymptotic 

expansion homogenization (AEH) method involving representative unit-cell (UC) model. In 

AEH method, analysis of UC model uses a set of periodic boundary condition (BC) which is 

usually assumed to be periodic in three-dimension. Nevertheless, composite laminates, 

especially in aerospace application, are very thin. It should not be considered infinitely in the 

thickness direction. This paper discusses an improvement in asymptotic analysis of periodic 

structure by modeling the finite thickness unit-cell model and relieving periodic boundary 

condition at the top and bottom of unit-cell surfaces to consider the effect of finite thickness in 

3-D composites. 

 

 

1. Introduction  

 

Analysis of 3-D composites structure is oftentimes cumbersome due to the very complex and 

heterogeneous microstructure. Idealizing the complex microstructure as a periodic structure 

can be a good approach which enables AEH method [1] to be performed to effectively and 

efficiently analyze 3-D composites. The idealized UC model and the applied periodic BC play 

an important role in obtaining the results of AEH method. In this analysis, the UC model is 

considered in two scales, those are microscopic and macroscopic scales. Guedes and Kikuchi 

[2] used this method for evaluating the averaged elastic constants and equivalent stress of 

composite materials. Chung et al [3] employed AEH method for analyzing UC of 2-D plain 

weave composites. The aforementioned studies exclude the calculation of coefficients of 

thermal expansion (CTE) and influence of thermal residual stresses. In this analysis, the 

thermal effect is considered due to its potentiality to affect composite damage behavior [4, 5]. 

Several AEH studies involving thermo-mechanical properties were conducted by Shabana and 

Noda [6] and Dasgupta et al [7]. AEH method was also performed in the thermomechanical 

analysis of 3-D orthogonal interlock composites by Nasution et al [8]. 
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The aforementioned studies employing AEH method employed a UC model which is 

considered to be repeated infinitely in three-dimension (in-plane and out-of-plane directions). 

However, 3-D composite laminates, especially in aerospace application, are very thin. It 

should not be considered infinitely in the thickness direction. The influence of finite thickness 

in composites structure was suggested by Woo and Whitcomb [9] as a future study. 

Furthermore, the architectures of 3-D composites are usually not periodic in the thickness 

direction, which necessitates the employment of a UC model representing the whole thickness 

of structure to obtain more accurate results. In this paper, an improvement in asymptotic 

analysis is performed by modeling the finite thickness unit-cell model of 3-D orthogonal 

interlock composites, and relieving periodic BC at the top and bottom of unit-cell surfaces 

[10]. 

 

2. AEH method  

 

2.1.General concept 

 

An elastic body Ω, shown in Fig. 1, is subjected to traction t and body forces f, where the 

displacement field is prescribed on Γd. The body consists of a large amount of heterogeneous 

and periodic microstructure which can be represented by a unit-cell (UC). In homogenization 

analysis, the heterogeneous UC can be viewed from two spatial scales, i.e. macroscopic scale 

(x- coordinate system) and microscopic scales (y- coordinate system) as seen in Fig. 2. 

 

 

Figure 1. Elastic body with heterogeneous and periodic microstructure. 

 

 

Figure 2. UC viewed from macroscopic and microscopic scales. 

 

The principle of virtual work is employed as a governing equation in this analysis. The 

mathematical expression in Eq. (1) includes the thermal effect represented in strain term.  
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AEH method represents the displacement field by using AE series as follows 

 

       1 2 2, , , ,k k k ku u u u      x y x y x y x y   (2) 

 

Microscopic displacement u
1
 is obtained by involving solution of variational problem (i.e. 

characteristic displacements or correctors) [2]. 
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where χ and ψ are the elastic and thermal correctors, respectively.  

The microstructure variables vary within the unit-cell in both microscopic and macroscopic 

scales, mathematically represented by periodic vector function g expressed in Eq. (4). 

 

     , ,g g g   x x y x y Y   (4) 

 

where ε = x/y and Y is the unit-cell dimension.  

 

2.2.Formulation of AEH method with in-plane periodicity 

 

This chapter briefly discusses the formulation of AEH method with only in-plane periodicity 

wherein the periodicity in the thickness direction is omitted. The detail of formulation can be 

found in [10]. The existence of only in-plane periodicity necessitates the modeling of through 

thickness unit-cell. The microstructure variables in thickness direction only vary within the 

microscopic scale, not in the macroscopic scale. Such kind of variation is represented by 

 

   1 2 1 1 2 2 3, , , ,g g x x y Y y Y y   x   (5) 

 

Periodic vector function in Eq. (5) yields the derivatives with respect to macroscopic 

coordinate x as follows 
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Periodic and heterogeneous microstructure is considered as macroscopically homogeneous 

structure when the limit expressions below exist. 
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where dY = dy1dy2dy3 and dΩ = dx1dx2. Substituting Eqs. (2) and (3) into Eq. (1), and 

involving Eq. (6) will results in three hierarchical equations based on the order of ε which are 

solved by taking the limit using expressions (7). 

 

 (i). Order of ε
-2

: 
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Virtual displacement is arbitrary, and can be a function of either x- or y- coordinate system. 

Choosing v=v(y), applying integration by parts and Gauss’ divergence theorem, considering 

the in-plane periodic BC as well as free traction boundary at the top and bottom of unit-cell 

surfaces yields 
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Eq. (9) implies that  0 0

1 2,k ku u x x . This expression asserts that the macroscopic problem is a 

two-dimensional problem. 

 

(ii). Order of ε
-1

: 
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Choosing v=v(x) and considering  0 0

1 2,k ku u x x  implies 

 

S

0i ip v dS    (11) 

 

Choosing v=v(y) and substituting Eq. (3) will obtains two microscopic equilibrium equations 

as follows 

For elastic problem: 
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For thermal problem: 
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where i, j, k, p, q = 1, 2, 3 and l = 1, 2. It is important to note that the index ‘k’ in Eq. (12) is 1 

and 2 due to the symmetry of elastic characteristic displacement vector χ, so that there are 

only three modes of χ, namely χ
11

, χ
12

, and χ
22

. 
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(iii). Order of ε: 
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Choosing v=v(x) and representing the microscopic displacement by Eq. (3) will obtains 

macroscopic equilibrium equation as follows 
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where: 

i, k, p, q = 1, 2, 3;     j, l = 1, 2 

The above formulation implies that omitting the periodic BC in thickness direction will 

results in homogenized in-plane properties. The homogenized properties are obtained by the 

following equations. 

- Macroscopic homogenized elastic constants: 
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- Macroscopic homogenized coefficients of thermal expansion: 
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where  0

ijklS is the macroscopic homogenized compliance tensor.  

 

2.3.Periodic boundary conditions 

 

Periodic BCs are employed in the calculation of elastic (χ) and thermal (ψ) correctors by 

using Eqs. (12) and (13), respectively. The periodic BCs, applied on the unit-cell surfaces, are 

expressed by Eq. (18) as follows (also valid for thermal correctors by replacing ψ with χ). 
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3. Results and discussion  

 

Numerical analysis is conducted by utilizing finite thickness (FT) UC model (Fig. 3(a)). 

However, the infinite thickness (IT) model, shown in Fig. 3(b), is also employed to better 

understand the effect of relieving periodic BC in thickness direction.  
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Figure 3. (a) Finite thickness (FT) model, (b) Infinite thickness (IT) model. 

 

 

Figure 4. Normalized homogenized properties as influenced by number of in-plane stacks (IT model). 

 

Fig. 4 elucidates the influences of relieving periodic BC in the thickness direction. The 

influences are evaluated by normalizing the homogenized thermo-mechanical properties 

obtained by AEH method with 2-D periodicity (i.e. in-plane periodicity) with those obtained 

by 3-D periodicity. The study is done by increasing the number of in-plane stacks (IT model). 

The results show that in the case of IT model of 3-D orthogonal interlocked composite, 

relieving periodic BC is insensitive to the results of elastic and shear moduli. However, it may 

affect the Poisson’s ratio and coefficients of thermal expansion where the increase of number 

of in-plane stacks tends to reduce the discrepancy with the 3-D periodicity results.   

In Fig. 5, the homogenized in-plane thermomechanical properties of FT model calculated by 

AEH method with 2-D periodicity are normalized by those obtained by 3-D periodicity 

utilizing both IT and FT models. The values of E1 and G12 normalized to both IT and FT 

models are found to be insensitive to the increasing of number of in-plane stacks. However, 

the increasing of in-plane stacks affects the rest of in-plane homogenized thermomechanical 

properties (i.e. E2, ν12, α1 and α2). This fact shows that the finite thickness UC model is 

necessary to be employed in the analysis particularly to the model consisting of a few number 

of in-plane stacks. 
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Figure 5. Normalized homogenized thermomechanical properties (FT model). 

 

Properties 
E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 
ν12 

α1 

(°/C) 

α2 

(°/C) 

Homogenization 

(10-Stack FT Model) 
59.38 57.55 2.96 0.034 4×10

-6
 4.12×10

-6
 

Experimental 59.13±1.23 - - 0.048±0.013 - - 

Table 1. Homogenized properties (10-stack FT model) and experimental results. 

 

Table 1 shows the obtained homogenized thermomechanical properties of 3-D orthogonal 

interlock composites calculated by 10-stack FT model [10]. The experimental results of E11 

and v12, also included in Table 1, are obtained by compression test from Ref. [11]. In the 

numerical analysis, the idealized FT unit-cell model has a total Vf of 50%, while the Vf of the 

specimen is 49.5%.  

A good agreement between homogenization and experimental results is compared for the 

elastic modulus E11 where the difference of less than 1% is obtained. However, the 

comparison of Poisson’s ratio yields a larger difference (i.e. 28%), despite the fact that the 

value of homogenization results is still acceptable according to the limit of experimental value. 

The larger differences can be affected by several factors, among others, the idealization 

procedures of unit-cell modeling, the sensitivity of v12 to the particular in-plane tows’ fiber 

properties [8] and the influence of strain gages placement [12]. 

 

4. Conclusions 

 

Formulation of AEH method for thermomechanical problem has been presented by employing 

in-plane periodicity. The relieving of periodic boundary condition at the top and bottom of 

unit cell surfaces consequently results that the macroscopic problem is two-dimensional.  

The numerical results show that the relieving of periodicity in the thickness direction may 

affect the calculated homogenized properties. In addition, the use of finite thickness UC 

model is found to be important especially when the model consists of a few number of in-



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

8 

 

plane stacks. In terms of comparison with the experimental results, a good agreement is 

compared specifically in the result of elastic modulus. A larger difference is found for 

Poisson’s ratio result in spite of the considered acceptable differences according to the limit of 

experimental value.  

 

References 

 

[1] A. Bensoussan, J. Lion and G. Papanicolaou. Asymptotic Analysis for Periodic Structures, 

North-Holland Publ Comp, Amsterdam, 1978. 

[2] J.M. Guedes and N. Kikuchi. Preprocessing and post processing for material based on the 

homogenization method with adaptive finite element methods. Computer Methods in 

Applied Mechanics and Engineering, volume (83):143-198, 1990. 

[3] P.W. Chung, K.K Tamma and R.N. Namburu “Asymptotic expansion homogenization 

for heterogeneous media: computational issues and applications”. Composites: Part A, 

Vol. 32, pp 1291-1301, 2001. 

[4] T. Hobbiebrunken, B. Fiedler, M. Hojo, S. Ochiai and K. Schulte. Microscopic yielding 

of CF/epoxy composites and the effect on the formation of thermal residual stresses. 

Composites Science and Technology, volume(65):1626-1635, 2005. 

[5] L. Yang, Y. Yan, J. Ma and B. Liu. Effects of inter-fiber spacing and thermal residual 

stresses on trasverse failure of fiber-reinforced polymer-matrix composites. 

Computational Materials Science, volume(68):255-262, 2013. 

[6] Y. Shabana and N. Noda. Numerical evaluation of the thermomechanical effective 

properties of a functionally graded material using the homogenization method. 

International Journal of Solids and Structures, volume(45):3494-3506, 2008. 

[7] A. Dasgupta, R.K. Agarwal and S.M. Bhandarkar. Three-dimensional modeling of 

woven-fabric composites for effective thermo-mechanical and thermal properties. 

Composites Science and Technology, volume(56):209-223, 1996.  

[8] M.R.E. Nasution, N. Watanabe, A. Kondo and A. Yudhanto. Thermomechanical 

properties and stress analysis of 3-D textile composites by asymptotic expansion 

homogenization method. Composites: Part B, volume(60):378-391, 2014. 

[9] K. Woo and J.D. Whitcomb. Effects of fiber misalignment on the engineering properties 

of plain weave textile composites. Composite Structures, volume(37):343-355, 1997. 

[10] M.R.E. Nasution, N. Watanabe, A. Kondo and A. Yudhanto. A novel asymptotic 

expansion homogenization analysis for 3-D composite with relieved periodicity in the 

thickness direction. Submitted to Composites Science and Technology, 2013. 

[11] N. Watanabe, H. Mibayashi. Experimental & analytical approach for compressive 

characteristic of 3-D composite. Proceedings of 42
nd

 AIAA/ASME/ASCE/ASC Structures, 

Structural Dynamics, and Materials Conference. Seattle, April 2001. Paper ID A01-

25242. 

[12] A. Yudhanto. Mechanical Characteristics and Damage Mechanisms of Stitched 

Carbon/Epoxy Composites Under Static and Fatigue Loads, PhD Thesis, Tokyo 

Metropolitan University, Tokyo, 2013. 


