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Abstract
A procedure for the determination of homogenized elastic moduli from a voxel-FE description
of the material architecture is presented. The voxel-FE approach enables the automated and
robust generation of Representative Elementary Volumes for a wide range of heterogeneous
materials, in particular woven composites. Thanks to the regularity of boundary meshes in voxel
models, the application of boundary conditions (periodic, kinematic uniform, static uniform and
mixed-uniform) as well as the determination of volumic averages for stresses and strains can
be both performed easily and efficiently. The convergence of voxel-FE results and the influence
of boundary conditions are studied for two typical problems.

1. Introduction

The inherent complexity of woven composite materials requires the development of specific
modelisation strategies and softwares such as Wisetex [1, 2] or Texgen [3]. The noticeable
difference in behaviors encountered on the heterogeneous micro-scale and the macro-scale is
strongly related to the geometric architecture of the material. The simulation of woven com-
posites thus requires to handle efficiently complex geometric information in order to generate
representative FE-models. The authors have developed a modelisation approach and a related
software based on voxel finite elements [4, 5, 6]. The basis of this approach has been used
extensively during the past 20 years in order to represent heterogeneous material architectures
[7, 8]. However, the genericity of the authors’ specific voxel-FE approach enables to generate
automatically FE-models (fig. 1) for potentially any kind of material architectures (polycrys-
talline aggregates, woven composites, particles reinforced composites...). This approach has
the main interests of its user-friendliness, robustness, high automation level, genericity and nat-
ural relation with tomographic data. Nonetheless, the size of voxel-FE models is generally
higher than the one of classical models and the use of regular hexahedral elements does not
enable direct accurate stress/strain estimations near materials interfaces. The first drawback
can be mitigated by the fact that simulations involving millions of degrees of freedom can now
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be performed rapidly on affordable modern computers. About the second one, very accurate
stress/strain evaluations do not matter when looking for homogenized properties.

This presentation will address the specific topic of the numerical homogenization of elastic
properties for mesoscopic Representative Elementary Volumes described with voxel-FE mod-
els. The effects of elements size and boundary conditions are more particularly studied.

Figure 1. Voxel-FE models: (left) metallic polycrystalline aggregate, (center) satin-5 woven composite, (right)
particle reinforced metal matrix composite.

2. Numerical homogenization of elastic properties

2.1. Principles

Here, we assume that the material mesoscopic properties are correctly described statistically
speaking by the hexahedral REV Ω defined as:

Ω =
[
x0

1, x
0
1 + L1

]
×

[
x0

2, x
0
2 + L2

]
×

[
x0
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0
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(1)

where
(
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1, x
0
2, x

0
3

)
is the origin of the REV and (L1, L2, L3) are the lengths in the different direc-

tions.

In Ω, the material constitutive law Ci jkl depends on the position x inside the REV. The local
stress and strain states are then related according to:

σi j (x) = Ci jkl (x) · εkl (x) (2)

If we define the spatial averages of local stress and strain by:〈
σi j

〉
=

1
|Ω|

∫
Ω

σi j (x) dV
〈
εi j

〉
=

1
|Ω|

∫
Ω

εi j (x) dV (3)

Then, the macroscopic apparent material constitutive law C∗i jkl relates
〈
σi j

〉
with 〈εkl〉:〈

σi j

〉
= C∗i jkl · 〈εkl〉 (4)

The purpose of the numerical homogenization procedure is the determination of the different
coefficients in C∗i jkl. From now on, it will be assumed that the homogenized material behavior
may be accurately described using a 3D orthotropic law with 9 parameters.
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2.2. Types of Boundary Conditions

Once the REV geometric and material properties have been correctly described in a FE model,
calculations with different boundary conditions are successively run in order to gain enough
information for the identification of material parameters. For the 3D orthotropic case, at least
6 different load-cases need to be successively applied. These load-cases can be derived from
different sets of boundary conditions.

2.2.1. Kinematic Uniform Boundary Conditions

The REV is here submitted to an imposed displacement field on its boundary:

ui (x) = ε0
i j · x j (x) , ∀x ∈ ∂Ω (5)

In that case we have: 〈
εi j

〉
= ε0

i j (6)

The results of FE simulations will lead to the evaluation of
〈
σi j

〉
. Material coefficients are then

identified according to Eq. 4.

2.2.2. Static Uniform Boundary Conditions

The REV is here submitted to an imposed traction field on its boundary:

ti (x) = σ0
i j · n j (x) , ∀x ∈ ∂Ω (7)

In that case we have: 〈
σi j

〉
= σ0

i j (8)

The results of FE simulations will lead to the evaluation of
〈
εi j

〉
that will then be used to iden-

tify materials coefficients according to
〈
εi j

〉
= S ∗i jkl · 〈σkl〉 (with C∗i jkl =

(
S ∗i jkl

)−1
). Practically,

Dirichlet boundary conditions must also be imposed in order to avoid rigid-body motions.

2.2.3. Periodic Mixed Uniform Boundary Conditions

These boundary conditions can be seen as an orthogonal mix of SUBC and KUBC:(
ui (x) − ε0

i j · x j (x)
)
·
(
ti (x) − σ0

i j · n j (x)
)

= 0 , ∀x ∈ ∂Ω (9)

They enforce a spacial averaged strain on the RVE:〈
εi j

〉
= ε0

i j (10)

There is not unicity of the MUBC. Among the possible choices, Pahr and Zysset [9] proposed
the so called Periodic-MUBC that can provide accurate results for periodic REV (tab. 1). By
definition, ∂Ω±i is the face of the hexahedral REV which has the outward normal ±ei.

3



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

〈
εi j

〉
= ε0

i j ∂Ω+
1 ∂Ω−1 ∂Ω+

2 ∂Ω−2 ∂Ω+
3 ∂Ω−3

e1 ⊗ e1 u1 = L1 u1 = 0 u2 = 0 u2 = 0 u3 = 0 u3 = 0
t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0

e2 ⊗ e2 u1 = 0 u1 = 0 u2 = L2 u2 = 0 u3 = 0 u3 = 0
t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0

e3 ⊗ e3 u1 = 0 u1 = 0 u2 = 0 u2 = 0 u3 = L3 u3 = 0
t2 = t3 = 0 t2 = t3 = 0 t1 = t3 = 0 t1 = t3 = 0 t1 = t2 = 0 t1 = t2 = 0

e1 ⊗ e2 u2 = L1 u2 = 0 u1 = L2 u2 = 0 u3 = 0 u3 = 0
+e2 ⊗ e1 t1 = u3 = 0 t1 = u3 = 0 t2 = u3 = 0 t2 = u3 = 0 t1 = t2 = 0 t1 = t2 = 0
e1 ⊗ e3 u3 = L1 u3 = 0 u2 = 0 u2 = 0 u1 = L3 u1 = 0

+e3 ⊗ e1 t1 = u2 = 0 t1 = u2 = 0 t1 = t3 = 0 t1 = t3 = 0 u2 = t3 = 0 u2 = t3 = 0
e2 ⊗ e3 u1 = 0 u1 = 0 u3 = L2 u3 = 0 u2 = L3 u2 = 0

+e3 ⊗ e2 t2 = t3 = 0 t2 = t3 = 0 u1 = t2 = 0 u1 = t2 = 0 u1 = t3 = 0 u1 = t3 = 0

Table 1. PMUBC boundary conditions for the 6 load cases applied to the hexahedral REV Ω, adapted from [9].

2.2.4. Periodic Boundary Conditions

In the case of woven composite materials, the periodicity of the architecture authorizes the use
of PBC. These boundary conditions impose a linear relation between displacements on opposite
faces:

u
∂Ω+

k
i (x + Lk · ek)−u

∂Ω−k
i (x) = ε0

i j ·

(
x
∂Ω+

k
j (x + Lk · ek) − x

∂Ω−k
j (x)

)
, ∀x ∈ ∂Ω−k , k ∈ {1, 2, 3} (11)

This leads to: 〈
εi j

〉
= ε0

i j (12)

2.3. Elastic properties bounding

The SUBC and KUBC solutions provide a bounding of effective properties:(
S S UBC

i jkl

)−1
≤ C∗i jkl ≤ CKUBC

i jkl (13)

MUBC properties are bounded the same way:(
S S UBC

i jkl

)−1
≤ CMUBC

i jkl ≤ CKUBC
i jkl (14)

In the case of periodic microstructures, it comes out:(
S S UBC

i jkl

)−1
≤ C∗i jkl = CPBC

i jkl = CPMUBC
i jkl ≤ CKUBC

i jkl (15)

2.4. Boundary averaging

In the absence of body forces and assuming that the stress field is statically equilibrated, it
comes out: 〈

σi j

〉
=

1
|Ω|

∫
∂Ω

ti (x) ⊗ x j (x) dS (16)
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〈
εi j

〉
=

1
2|Ω|

∫
∂Ω

(
ui (x) ⊗ n j (x) + u j (x) ⊗ ni (x)

)
dS (17)

The use of these properties can accelerate dramatically the post-processing of FE output results.
They only require the summation of nodal boundary data instead of elementary volumic ones.

3. Test problems

3.1. Problems definition

The first model geometry consists of a single yarn with a circular cross section embedded in a
cubic REV (fig. 2). The yarn volumic fraction is set to 0.47. Isotropic materials are used for both
the yarn (boron) and the matrix (aluminium) with the following properties: Ey = 379.3 GPa,
νy = 0.1 and Em = 68.3 GPa, νm = 0.3. A numerical homogenization procedure is first per-
formed using the conformal FE approach. Thanks to the simplicity of the architecture, the
model is generated using Abaqus python scripting language. The convergence of homogenized
moduli is studied using 10 nodes tetrahedral (C3D10) and 20 nodes hexahedral (C3D20R - re-
duced integration) elements. The converged moduli provide accurate references (5 digits) with
which voxel-FE results are to be compared (tab. 2, 3).

The second model involves two yarns in a REV of dimensions (L1, L2, L3) = (6, 6, 4) mm.
Yarns cross section is elliptic with a major and minor axes of lengths 5 and 1.5 respectively.
The geometry is defined in fig. 2. The yarn volumic fraction is 5π/32 ≈ 0.4909. The isotropic
materials used for the matrix and yarn have the following properties: Ey = 100 GPa, νy = 0.3
and Em = 5 GPa, νm = 0.2. Homogenized elastic moduli are first determined accurately for
the model through a convergence study with conformal finite elements (10 nodes tetrahedral
C3D10) generated by Abaqus/Python scripts. These moduli may then be used in order to assess
the convergence behavior of voxels-FE solutions (tab. 4).

Figure 2. REV used for homogenization procedures : (left) model 1, (center) model 2, (right) model 2 dimensions.

3.2. Convergence analysis

Voxel-FE results are generated with an increasing number of elements using PMUBC. The
relative error on moduli decreases as the number of elements increases (tab. 2). These errors
have the same behavior as the error on the volumic fraction of yarns. The native voxel mesh
overestimates the yarns size and hence their volumic fraction. An option can be specified to
the voxelizer software so that a prescribed volumic fraction is satisfied. With this adaptation,
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voxel-FE results converge much faster (tab. 3,4 and fig. 3). Examples of deformed REV are
provided for model 1 and model 2 under the shear 23 load-case in fig. 4.

nDOF FE-voxel 332k 556k 1.07M 2.11M 5.18M FEM ref. VAMUCH [10]
ηyarn (%) 51.15 50.02 49.81 49.31 48.34 47 47
E11 (GPa) 224,77 224,10 222,54 219,87 219,51 215,33 215,3
E22=E33 153,40 152,43 150,95 148,42 147,91 143,96 144,1
G12=G13 57,90 57,50 56,99 56,09 55,84 54,378 54,39

G23 48,06 47,87 47,51 46,96 46,80 45,823 45,92
ν12 = ν13 0,188 0,188 0,189 0,191 0,192 0,19456 0,195
ν23 0,240 0,241 0,244 0,248 0,248 0,255 0,255

Table 2. Homogenized moduli for model 1 with native voxel-FE PMUBC approach

nDOF FE-voxel 332k 556k 1.07M 2.11M FEM ref. VAMUCH [10]
ηyarn (%) 47.13 47 47.06 47.11 47 47
E11 (GPa) 215.77 215.38 215.55 215.69 215.33 215.3
E22=E33 145.65 145.11 145.11 144.97 143.96 144.1
G12=G13 55.06 54.79 54.74 54.71 54.378 54.39

G23 46.20 46.05 45.97 45.99 45.823 45.92
ν12 = ν13 0.194 0.194 0.194 0.194 0.19456 0.195
ν23 0.250 0.251 0.251 0.252 0.255 0.255

Table 3. Homogenized moduli for model 1 with adapted voxel-FE PMUBC approach

nDOF FE-voxel 222k 422k 715k 1.07M 2.04M FEM ref.
ηyarn (%) 49,26 49,13 49,18 49,06 49,1 49,09

E11=E22 (GPa) 34,23 34,11 34,28 34,16 34,14 34.204
E33 12,04 11,90 11,85 11,82 11,77 11.570
G12 7,45 7,39 7,54 7,49 7,44 7.5364

G13=G23 4,64 4,59 4,57 4,57 4,54 4.4692
ν12 0,129 0,129 0,131 0,130 0,130 0.13050

ν13 = ν23 0,245 0,246 0,246 0,247 0,247 0.24957

Table 4. Homogenized moduli for model 2 with adapted voxel-FE PMUBC approach

3.3. Influence of boundary conditions

The first model is submitted to SUBC, PBC, PMUBC and KUBC for different values of the
yarn volumic fraction (fig. 5). The voxel-FE models used contains 332k Degrees Of Freedom.
The boundings of Eq. (15) are respected. PMUBC and PBC results are in good accordance
with reference ones obtained with conformal FE meshes.

4. Conclusion

The numerical homogenization of elastic properties for two material architectures has been suc-
cessfully performed with voxel-FE models. The reinforcement phase volumic fraction should

6



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

Figure 3. Relative errors on moduli: (left) model 1, (right) model 2.

(a) (b) (c) (d)

Figure 4. Deformed shapes of voxel REV under PMUBC shear 23 loading: (a) model 1 with 503 voxels, (b) model
1 with 1003 voxels, (c) model 2 with 503 voxels, (d) model 2 with 1003 voxels.

be specified as an input information so as to reach ≈ 1% accuracy on moduli with relatively light
models. Periodic Mixed Uniform Boundary Conditions provide results as accurate as Periodic
Boundary Conditions for periodic microstructures.
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