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Abstract

In this work, the Proper Generalized Decomposition (PGD) method is used to simulate the
cyclic loading of a polymer specimen. The viscoelastic behavior of the polymer is described
by a Generalized Maxwell model which makes use of a relaxation times distribution. From a
numerical point of view, a global model and several local models had to be solved. Within
the PGD framework, the globalization of the local models is here investigated and consists in
solving entirely all the problems (equilibrium equation and internal variables evolution) with
the PGD method. As different times are considered, we here discuss the possibility to decrease
the computation time by using adapted time discretizations. For this purpose, the link between
the cycle time, the relaxation time and the time step is analyzed through different simulations
according to the number of relaxation times and the relaxation times distribution.

1. Introduction

In order to model the linear viscoelastic behavior of polymer materials, a General Maxwell
model is often used. This model consists in using internal variables and their associated relax-
ation times. The evolution of the internal variables are described by differential equations to
represent the kinetic evolution of microscopic phenomena. According to the polymer material
and the temporal domain of the simulation, a large number m of relaxation times have to be
considered. As example, Cunat has demonstrated in 1991 [1] the necessity to consider 50 re-
laxation times for an accurate representation of a continuous distribution spread over 6 decades.
To predict the response of these materials, the finite element method is classically used and
consists in integrating the local models (m differential equations) at the Gauss points and then
solving the global model. The nature of the differential equations can require a large compu-
tation time. Indeed, the solving of nonlinear differential equations requires the use of another
temporal scheme, for example an adaptive Runge-Kutta. Moreover, for polymer materials, a
large number of cycles has to be simulated to reach the the stabilized cycle which induces a
large time domain. The prediction of the viscoelatic polymer under cyclic loading can be there-
fore time consuming.
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To overcome this computation time, other numerical strategies can be investigated as for ex-
ample the LArge Time INcrement method [2]. We here suggest the use of another alternative
numerical method: the Proper Generalized Decomposition (PGD) method ([3]). This method
consists in writing a space and time separated representation of the unknown fields. The ba-
sis functions are not known a priori like in the Proper Orthogonal Decomposition method but
constructed within an iterative procedure. For a complete and recent review of this method,
the reader can refer to [4] and the references therein. The coupling between global and local
equations have already been investigated in the framework of the PGD with different strategies.
For details, the reader can refer to [5]. In this paper, as the equations are strongly coupled, the
adopted strategy consists in globalizing the solution of the local models. All the problems are
solved entirely with the PGD method. The main inconvenient is that if the number of internal
variables is high, the computation time becomes large, a space-time solver being applied for
each species.

As in our aimed application, the number of internal variables can be large, we here suggest to
decrease this computation time by considering adapted time discretizations. They are linked to
the cycle time and the relaxation time. The purpose of this paper is to discuss this link.

In the first part of the paper, the numerical modeling within the PGD framework and the param-
eters of the simulation are presented. In the next section, the results are compared and discussed
in terms of displacement accuracy and computation time according to the time step, the number
of internal variables and the relaxation time. This section precedes the conclusions.

2. Numerical procedure
2.1. Simulation model

Let us consider a one-dimensional mechanical equation with a viscoelastic behavior described
by internal variables z;. The generic form of the problem can be written as follows:

97, f=o, (1)
ox
de 1 o .
E+T—j(z,-—zj):0 Vi<j<m )
where
ou Z
o= Eo —;zj, 3)
(o] ooau .
5= N V 1<j<m. 4)

where 27’ is the value at the equilibrium of the internal variables z;, 7; is the associated relaxation
time, E, is the vitreous modulus. The relaxed modulus at equilibrium E7 generated by the
process jis written as: E = p;E, ¥V 1< j <m, where E, represents the relaxed modulus and
p; the weights given by a distribution.

Equations ((1) and (2)) are assumed to be defined on the domain: Q = Q, X €, where Q, =
[0, L,] and Q, = [0, L,]. The initial conditions are equal to zero for the displacement field and
the internal variables and the boundary conditions are written as: g.n = F on 0€), and u = 0 on

0Q,.



ECCM-16"™ EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

2.2. Application of the Proper Generalized Decomposition method

To solve this problem with the PGD method, we first globalize the local models as suggested in
[5] by considering the internal variables as functions of space and time. The solutions « and z
of the coupled problem are sought under the form:

u(x,t =~ ZA (x)Bi(?) and z; (x, 1) = Z Cij(x)D;j(t) Y 1< j<m.

At enrlchment step n of the PGD algorlthm the following approximations are already known:

W' (x,1) = ) A0Bi(), (5)
i=1
(=) CiDyn ¥ 1<j<m 6)

We wish to compute the next functional product A, (x)B,+1(f) and C,11);(X)Dgy41)j(1) ¥V 1 <
J < m which is denoted by R(x)S (¢) and V(x)W;(r) V1 < j < m for alleviating the notation.

As the displacement and the internal variables are strongly coupled, all the unknowns could be
computed at each enrichment step as in our previous paper in the case of thermoviscoelasticity
[6]. Let us here remark that the displacement field and the internal variables are completely
interrelated, but each internal variable depends only on the value of the displacement. We here
suggest to compute alternatively the functional products R(x)S (¢) and V(x)W;(t) V1 < j < m.
At each enrichment step, it leads to solve m + 1 nonlinear problems as described below.
Remark. In our simulations, f = 0 and the boundary conditions are as follows: o n= F at
x = L, where F depends only on time and # = 0 at x = 0. The following equations are related
to these parameters.

1. Computing R(x)S (¢)

The weak form related to Equation (1) reads:

f (divo + f)u'dQ + f (0‘ n F) wdS =0 %)

0Q,

for all test functions u* selected in an appropriate functional space.
The stress o being derived from Equation (3) with the values z;f, and the trial and test functions
being written as follows:

u(x, 1) = Z Ai(x)Bi(1) + R(x)S (1), (®)
i=1
u' (x,1) = R'(x)S (1) + R(x)S*(2), )

Equation (7) is a nonlinear problem with respect to R(x) and S (¢) that must be solved by means

3
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of a suitable iteration scheme. The simple iterative scheme is an alternating directions point
fixed algorithm. Each iteration consists of two steps that are repeated until convergence. The
first step assumes S () known from the previous iteration and computes an update for R(x).
From the just-updated R(x), the second step updates S (7).

Remark. At n=0, R(x)S (¢) is solution of the related elastic problem (without any internal vari-
able).

2. Computing V;(x)W;()) VI < j<m

For each value of j, the weak form related to Equation (2) reads:

dz; 1 o)
f(E'f';(Zj_Zj ))zde:O (10)
Q

J

for all test functions z; selected in an appropriate functional space.
The value of the internal variable at the equilibrium z7° being derived from Equation (4) with
the value #"*!, and the trial and test functions being written as follows:

2 (60 = ) Cy(IDy(1) + V() Wj(0), (11)

i=1

Z(00) = VIOW,0) + Vi)W, (), (12)

Equation (10) is a nonlinear problem with respect to V;(x) and W;(r). An alternating direc-
tions point fixed algorithm is used as previously for the displacement. Each iteration consists
of two steps that are repeated until convergence. The first step assumes W;(#) known from the
previous iteration and computes an update for V;(x). From the just-updated V;(x), the second
step updates W;(r). This iterative procedure continues until reaching convergence. Then z**! is
computed from the converged functions V;(x), W;(?).

Once the solutions #"* and all z’}.” are computed, the residuals are defined: Re,, related to equa-

tion (1), and Re_;, related to equation (2).

n+1

1
2

2
(o35
=1

Re, = ; (13)
el

dz; 1 E® P 2
. = L, _Jou
max; f( dt + T_/'Z-] T ax) dQ

llz;ll

Re;; = , (14)

where || || stands for the L? norm.
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The iterative procedure stops when max (Re,, (Re;, j = 1, ..,n)) is small enough. The solution
of the coupled problem is then given by equation (5) for u and (6) for z;. The details of the fixed
point algorithm equations are given in [7].

2.3. Simulation parameters

The simulation test is a 5 mm long one-dimensional bar clamped at x = 0 and subject to a
cyclic time load F'(¢) which consists in 50 cycles with a cycle time of 20 s. The total simulation
time equals 1000s. The material parameters are representative of a polypropylene material and
are as follows: E, = 1000 MPa, E, = 1140 MPa. Different numbers of internal variables are
investigated: 1 and 3. For each number of internal variables, the two degrees of freedom are :
(a) the relaxation times with respect to the time cycle and (b) the associated time discretization.

3. Results
3.1. One internal variable

In the case of one internal variable, let us consider the following relaxation times: 1s (smaller
than the time cycle), 10s (same than the time cycle) and 100s (larger than the time cycle), leading
respectively to three different behaviors. The stabilized cycle is quickly reached in the case of
the smaller relaxation time. In the case of the larger time cycle, this time domain is not large
enough to capture the stabilized cycle, leading to a large computation time. Let us consider the
influence of the time discretization on the accuracy of the displacement. The following time
steps are investigated: 0.12s, 0.5s, 2s, 10s. The accuracy is computed by comparison with the
prediction obtained with the finest time step. Figure 1 depicts the displacement for different
time steps in the case of 7 = 1s. An accurate result is obtained with a time step smaller than
10s.

The different simulations show that when the relaxation time is greater (respectively smaller)
than the time cycle, a coarse (respectively fine) scale is adequate to simulate the behavior of the
polymer. The time basis can therefore be adapted to the relaxation time.

3.2. Three internal variables

Let us consider that the viscoelasticity is here described by three internal variables leading to
three different relaxation times as follows:

- smaller than the cycle time [0.1, 1, 10]s,

- same order of the cycle time [1, 10, 100]s,

- greater than the cycle time [100, 1000, 10000]s

and for each triplet of relaxation times, the time step will take different values. An accurate
displacement is obtained as expected in the case where the time step of the internal variable
is adapted to the associated relaxation time. The relationship between these times follows the
results obtained in the case of only one internal variable. The associated time steps are re-
spectively [0.17, 0.25, 1]s, [0.25, 0.5, 2]s, [2, 5, 10]s for T equals [0.1, 1, 10]s, [1, 10, 10]s,
[100, 1000, 10000]s. Let us recall that the reference solution is the solution obtained with the
finest time step for all the internal variables. Concerning the computation time, we observe that
the gain ratio with adapted time steps increases with the relaxation times as depicted in Table 1.
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Figure 1. Displacement (mm) with respect to time for different time steps: [0.12,0.5,2,10]s which correspond to
Nt = [6000, 2000, 500, 100]

Triplet of relaxation times (s) Gain ratio Number of PGD modes

[0.1,1, 10] 3 8
[1, 10, 100] 5 12
[100, 1000, 10000] 8 3

Table 1. Gain ratio and number of PGD modes in the case of adapted discretizations for different triplets of
relaxation times.

4. Conclusions

Within the PGD framework, the globalization of the local models allows to predict accurately
the viscoelastic behavior of the polymer under cyclic loading. As the number of local models
can be large, the computation time can become large. In this paper, the case with one internal
variable has shown that it exists a link between the relaxation time, the cycle time and the time
step to have accurate results. A coarse mesh is efficient with a large relaxation time whereas a
finer mesh is mandatory with a relaxation time smaller than the cycle time. The same conclu-
sions have been validated in the case of 3 internal variables. Adapted discretizations for each
internal variable have reduced the computation time by a factor 8 in the case of three relaxation
times larger than the time cycle. This factor decreases when the relaxation times are smaller
than the time cycles. This way offers an opportunity to reduce computation time of viscoelastic-
ity within the PGD framework. The future work consists in dealing with more realistic number
of internal variables and more complex behaviors like non linear viscoelasticity.
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