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Abstract

In this work a numerical simulation of fiber suspensions emgient and steady shear flow
is presented. Concentrated suspensions are considered &lith interactions between fibers:
short-range hydrodynamic interaction via lubrificatiomdes, contact forces and hydrodynamic
forces. The kinematic of a population of fibers is then calimd using a derived equation of the
second order orientation tensor. This simulation is neags$or rigid fiber filled composites,
since the final orientation of the fibers is induced by the flawird) the processing of the
composites and is hard to control.

1. Introduction

Fiber suspensions have become an important part of the cot@podustry. In fact, most of
thermoplastic and polymeric materials have poor mechbprogerties and they are often rein-
forced with fibers. To bef&cient, fibers must be oriented in the correct direction. Mueg, the
content of fibers in fiber reinforced composites is genetallye, and concentrated suspensions
are usually considered.

Models for describing the behaviour of dilute or semi-adlgblutions of rigid short fibers ex-
ist in the litterature [1, 2]. However the behaviour of comitated suspensions isfitiult to
describe. One way of studying the behaviour of concentrsisgensions, is to perform direct
numerical simulations (DNS). DNS is based on the computaiio a representative volume,
of the motion of a hundred of fibers and their interactionss & step by step process which
derives kinematics as well as macroscopic properties tfiesses), while taking into account
the forces applied on each fiber at the the microsopic scal&éhi method has been used for
non spherical particles and for non-rigid particles underpde shear flow [4, 5]. However in
these publications, all particles had the same aspect eattthey all flipped at the same time
in the flow, thus producing large periodic fluctuations [6,af)jd making it impossible to get a
reasonable steady state.

In this work the objective is to describe the kinematic of g@ydation of rigid fibers, having
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a distribution of lengths. In fact, the assumption of fiberghwa distribution of lengths is close
to real industrial composites [8, 9].

2. Approach

In order to study the behaviour of a population of fibers ingegivolume, a reference cell
is considered containing a certain number of fibers (FigyrePEriodic boundary conditions
are applied to simulate fiber motion [10]. For a populatiorfiloérs, the orientation tensas
desribes the state of orientation for a population of fiben®se components are given, for a
quantity ofn fibers by [11]:

1 : & ~O
ak = ﬁ; P Py (1)

wherep; and p, are the components @f the orientation of each fiber which is a unit vector.
Index« indicates the number of the fiber.

The interaction tensds, is related to the probability of contact for two fibersandB. This
tensor is given by [12]:

b= =5 > DI X IRl (2)

a=1 =1

2.1. Hypotheses

The main hypotheses made are:

(a) The matrix is Newtonian and the inertia of fibers is neigléc

(b) The fiber suspension is concentrated.

(c) Initially, the fibers are uniformly distributed in the lwone, their orientation state defined by
equation (1) is isotropic, and they are not in any state ofamin

(d) Fibers are assumed to be rigid prolate spheroids withthesh®, diameterd and aspect ratio

|
r® = % with negligible mass.
(e) For the interactions between fibers, two main forces ansidered: a lubrification force
occurs when two fibers move close to each other and a contaet fakes place when two
fibers are touching one another. The shearing lubrificaborefis supposed to be much smaller
than the squeezing one, the surface of the fibers is smoottharfdction force is small when
fibers get into contact. This is why, only normal componeritces to the fiber's axis are
taken into account here.

2.2. Distance between two fibers

The normal to the plane of two fibersindk with orientationg® andp® is defined as:

p® x p®

(MK _
n =t—
I1p® x pld ||
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Figure 1. Reference cell surrounded by neighoring cells

The distance from the mass center of fib&er the contact point of fibetis 1¥ and the distance
from the mass center of fib&rto the contact point of fibdris 1%V (figure 2) [13]:

~(r® = r®).p0 + [(rO — r®).p®] . (p0.p®)
1 - (p®.p®)>?
~(r® — r0).p® + [(r - r0).p0] . (p®.p0)

1 - (p®.p®)?
r® being the position of the center of gravity of fidetJsing equations (4) and (5) the gap¥

160 _

(4)
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(5)

particle i

particle

Figure 2. Contact or lubrification between two fibers

between two fibers is obtained according to [13]:

(1K (ki)?
0 = (r O _ p®) 080 _ d ji_4 d |

2 02 2\ w2 ©)

When the gap between fiberandk is positive but smaller than a fraction of the fiber diameter
d, the lubrification force is assumed to occur. On the othedtifap®¥ is smaller than or equal
to zero, the contact force occurs.
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2.3. Equations of motion

A simple shear flow, having a shear rate/dfinit s1) is supposed to be applied to the suspend-
ing fluid, being the velocity field given by:

u'(x) = (.. 0,0) (7)

The flow is imposed in the first directiotd, (wheredy is a unit vector), of the three dimensional
spacex, v, Z] , andy is supposed to be uniform in the cell. The rate of strain teasd vorticity
tensor are:

o L o
D=1 (vu+@u) = |¥ 2 8
—5(‘”(“))—500 (8)
0 0 0
(0o L o
1 T .2
W:E(Vu—(Vu)): _% 0 0 9)
|0 0 0
with the velocity gradient defined as :
0y 0
Vu:%: 000 (10)
» oo o

m=1, 2 and 3 defines the index for the three componentg)9f andn=1,2 and 3 defines the
index for the three dimensionsy, andz

To describe the fibers motior) is related to the fiber’s perturbed velocd§ by:

P — q(i) + j,y(i)(gx (11)
The fiber’'s motion is then represented by the following eiguat

FO+20.99 =0 (12)
whereF® represents the resultant force acting on fibend¢( is the resistance tensor of the

fiber in the shear flow [14F® is the sum of the lubrification and contact forces acting @n th
fiber. The evolution of the fiber’s orientation is:

p=-p"x (0" - Q) (13)
whereQ is the fluid’s angular velocity. Equation (13) contains a nesetor o, which is

the relative rotating velocity of the fiber with respect te tifuid. Since the inertia of fibers is
neglected, the balance of momentum writes:

T+ +6:D=0 (14)

whereT( s the resultant momentum of the forcésand¢ are the rotating resistance tensors
[14]. The last term in equation (14) is the torque caused bYlthd's deformation. For a couple
of fibers in interactio @ is given by:

TO = p® x (Z 100 0GR 4 3 16D FE 0D (15)

ki |#i
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Indexk represents each fiber in contact with fibend index represents each fiber in lubrifi-
cation with fiberi. F{ andF{? are the contact and lubrification forces respectively. IKina
from equations (14) and (15) equation (13) can be rewritsen a

b0 = | 3100 EEORE0 1 7100 EGIR00 |4 50, (16)

ki i

whereg is a constant and the fiery orientation evolution for a fiber with no interactions is
given by: . _ _ . . N
p?e)f = Q_p(') + /l(l) [D_p(') _ (D : p(l) ) p(l)) .p(')] (17)

whereA® is a parameter that depends on the aspect ratio of theifiber
3. Results and Discussion
3.1. Initial state

A volume fraction of fibers of 15% was used to create the initial state. A total number of
n = 343 fibers were placed into a cubic volume (figure 3) accortinigypothesis (c). Their

isotropic state was verified by applying equation (1), thusally one gets:a, =~ %I and

b, ~ 112I . | being the unit tensor. A normal distribution function wasdiso create fibers with

varying lengths. This distribution was associated with amaspect ratio of 20 and a standard
deviation of 3.

vorticity direction (z)

gradient direction (y)

velocity direction (x)

Figure 3. Initial state of the fibers

3.2. Kinematic evolution with interactions

A simple shear flow, with a shear raje= 1s! was applied in the suspensions depicted in
figure 3. Figure 4 shows the evolution of thg & a,x component. The dotted curve shows this
evolution for a polydisperse concentrated suspensiormFigure 4 it is possible to determine
the transient phase and an almost steady phase in the regieedn 100 and 200 seconds where
the a; component no longer changes. The width of the first peak anfittbtuations that occur
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Figure 4. Time evolution of the & component

in the steady state, are due to the amount of interactionsamapg between fibers (contact and
lubrification forces).

Unlike the case of diluted suspensions (in absence of ictieres) where fibers having the same
lengths rotated periodically with the flow [15, 16] (dashedve in figure 4), these interactions
tend to slow down the rotation of the fibers and alter the pkcidetery’s orbit. Finally the
fibers reach an orientation close to the direction of theiag@hear flow (figure 5). Also for
polydisperse diluted suspensions (dotted dashed cutve)Jdtery’s orbit is again changed
because fibers don't have the same aspect ratio (paraniéter equation (17)). Thus each
fibers will have a dierent speed of rotation and no periodic behaviour is obgerve

vorticity direction (z)

gradient direction (y)

velocity direction (x)

Figure 5. Final state of the fibers

Equation (2) from which the h component is calculated, describes the interactions oagrur
From figure 6, a transient and an almost steady state areaiseain the polydisperse concen-
trated case (dotted curve) for approximately the same tone:zhe steady phase is in the same
region as the one in figure 4, confirming the fact that the atgons become stable with the
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fibers aligning in a direction very close to that of the applsdear flow. For the monodisperse
concentrated case (solid curve), an almost periodic bebiaig observed along with a decreas-
ing amplitude. This is due to the fact that in the polydispexase longer fibers exist which lead
to an increase in the number of contacts. Thus the interatiothe polydisperse case become
stable in a shorter time than those in the monodisperse chseeviibers are more likely to
rotate. In fact figure 4 (solid curve), shows that in the ragietween 100 and 200 seconds, the
fibers tend to rotate rather than being in a steady statehEanbnodisperse diluted case there

are no interactions, hence the; ltomponent is equal to zero. This is why the monodisperse
diluted case isn’t represented here.

0.35
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Figure 6. Evolution of the h; component with time

4. Conclusion

In this work a DNS of a population of fibers was conducted ireortd study the interactions
involved. Unlike diluted suspensions with fibers havingshene length, it was shown from the
evolution of the g component that polydisperse concentrated suspensioteos #xhibit two
phases: a transient phase where the fibers tend to rotateetsibeved down by the interactions
involved and an almost steady state represented by theitgajbthe fibers aligned in the flow
shear direction. In this direction interactions are stainld that was shown by the evolution of
the b, component. For the monodisperse concentrated case, #nadtibons take a longer time
to become stable and are fluctuating with a decreasing ardplitalong with fibers that tend
to rotate. The dference between the two cases, was due to the existence ef livgys in the
polydisperse case, that increased contacts between fiealy for the polydisperse diluted
suspensions, the periodicfiiry’s orbit was altered because fibers hatkedent aspect ratios.

The next step of this work is to compare these results withptieeliction of the kinetic the-
ory and to derive rheological properties.
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