
ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

A SHELL ELEMENT FORMULATION FOR THE SIMULATION OF
PROPAGATING DELAMINATION AND THROUGH-THICKNESS

CRACKS

J. Brouzoulis1, M. Fagerström∗1, E. Svenning1

1Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden
∗ Corresponding Author: martin.fagerstrom@chalmers.se

Keywords: multiple delaminations, through-thickness cracks, shell elements, XFEM,

Abstract
In this contribution, we propose an enhanced shell element formulation for mesh independent
FE simulation of through-thickness and multiple delamination crack propagation in orthotropic
laminates, cf. Figure 1 for an illustration of the possibilities of using this shell element (multiple
delaminations). The ambition is to offer a finite element tool to be used for larger component
simulations, without having to resort to explicit resolution of each laminae in the laminated
structure by three dimensional solid elements or stacked shell elements. The formulation in-
volves three different types of displacement enrichments to make sure that each delaminated
subsection which is also cut by a through thickness crack can be individually represented with-
out (unphysical) kinematical couplings to the surrounding structure in the laminate. So far, the
proposed modelling framework has been validated against pure deformation modes, in terms of
either multiple delaminations or a through-thickness crack.

1. Introduction

The ability to investigate the crashworthiness of fibre reinforced vehicle structures, by efficient
numerical simulations, is crucial for FRP lightweight materials to see widespread use in fu-
ture cars. Consequently, for an accurate prediction of the crashworthiness performance, careful
considerations of the underlying failure mechanisms are necessary for the proper modelling of
progressive laminate failure in this type of application. However, in addition to the relevance
and accuracy of the adopted material model, also the computational efficiency of the structural
analysis is essential. This, in order to enable full car crash Finite Element (FE) analyses, meet-
ing today’s development lead times in the automotive industry.

Figure 1. Results obtained by modelling multiple delaminations within the same shell using the formulation
proposed in Reference [1], cf. also the first numerical example below.
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One approach to meet the requirements of computational efficiency would be to restrict the fi-
nite element analysis to shells only, and to only allow one shell element through the thickness.
This, however, poses at least two requirements on the shell formulation itself: i) the stress vari-
ation through the laminate is accurately captured and ii) the shell kinematics allows also for the
modelling of failure mechanisms such as delaminations and cracks. In a parallel contribution,
the first requirement is addressed using a multiscale approach where the laminate is locally re-
solved by a 3D representative volume element, cf. Främby et al. for details [2]. In the current
contribution we instead focus on the second challenge, thereby proposing an enhanced shell
element formulation based on the eXtended Finite Element Method (XFEM) for mesh inde-
pendent FE simulation of through-thickness and delamination crack propagation in orthotropic
laminates. Consequently, kinematical enrichments are added to the basic shell representation
in order to describe delamination cracks and through-thickness cracks. The proposed formula-
tion herein is an extension of the recently proposed shell element for the analysis of multiple
delaminations [1], cf. Figure 1 for an illustration of the possibilities of using this formulation,
formulated along the lines set out in Larsson et al. [3]. In this context, we acknowledge the pre-
vious developments using XFEM to model failure in composites, e.g. de Borst and Remmers [4]
modelling arbitrary delaminations and Van der Meer et al. [5] modelling matrix cracks and de-
laminations by XFEM enhanced solid elements (matrix cracks) and interconnecting classical
cohesive elements (delaminations).

As a consequence of the adopted kinematics with local enrichments, propagation of both de-
lamination and through-thickness cracks can be treated simultaneously and independently of the
spatial discretisation, thereby reducing the computational effort required in large scale analyses.
It is emphasised that the level of detail in the present approach is such that individual delam-
inations can be analysed using a mixed mode cohesive zone approach; however, it is not fine
enough to capture cracks growing through individual laminae. The latter are instead to be in-
corporated in a ’smeared’ sense by a material model including damage in the spirit of Maimı́ et
al. [6] which incorporates the relevant failure mechanisms. Thus, focus is on the representation
of ’global’ cracking of the laminate where discrete cracks can be incorporated when the struc-
tural integrity is lost or nearly lost. So far, the kinematical implementation has been verified, as
shown in the numerical examples of this paper.

2. Continuous shell kinematics

To set the stage, we first briefly describe the underlying shell kinematics for a non-delaminated
shell, which in the subsequent section then will be extended to allow for arbitrarily many de-
laminations as well as a through thickness crack.

2.1. Initial shell geometry and convected coordinates

As a staring point, the initial configuration B0 of the shell is considered parameterised in terms
of convected (covariant) coordinates (ξ1, ξ2, ξ) as

B0 =
{
X := Φ(ξ) = Φ̄(ξ̄) + ξM(ξ̄)

with
(
ξ̄
)
∈ A and ξ ∈ h0

2 [−1, 1]
}

(1)

where we introduced the contracted notation ξ = (ξ1, ξ2, ξ) and ξ̄ = (ξ1, ξ2) and where the map-
pingΦ(ξ) maps the inertial Cartesian frame into the undeformed configuration, cf. Figure 2. In
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Figure 2. Mappings of shell model defining undeformed and deformed shell configurations relative to inertial
Cartesian frame.

Eq (1), the mapping Φ is defined by the midsurface placement Φ̄ and the outward unit normal
vector field M (with |M| = 1). The coordinate ξ is associated with this direction and h0 is the
initial thickness of the shell.

Furthermore, it should be noted that

dX = (Gα ⊗ Gα) · dX + M ⊗ M · dX =

= Gα(ξ)dξα + M(ξ̄)dξ (2)

whereby the co-variant basis vectors are defined by

Gα = Φ̄,α + ξM,α α = 1, 2 (3)

G3 = G3 = M (4)

where •,α denotes the derivative with respect to ξα.

2.2. Current shell geometry

The current (deformed) geometry is in the present formulation described by the deformation
map ϕ(ξ) ∈ B of the inertial Cartesian frame as

x(ξ) = ϕ̄(ξ̄) + ξm(ξ̄) +
1
2
ξ2γ(ξ̄)m(ξ̄) (5)

where the mapping is defined by the midsurface placement ϕ̄, the spatial director field m and
an additional scalar thickness inhomogeneity strain γ, cf. also Figure 2. As can be seen, the
specification of the current configuration corresponds to a second order Taylor expansion along
the director field, involving the inhomogeneity strain γ, thereby describing inhomogeneous
thickness deformation effects of the shell. In particular, the pathological Poisson locking effect
is avoided in this fashion. To identify the corresponding deformation gradient, a relative motion
dx of the non-linear placement ϕ is considered as

dx =

(
ϕ̄,α + m,α

(
ξ +

1
2
γξ2

)
+

1
2
γ,αξ

2m
)

dξα + m (1 + γξ) dξ (6)

whereby the deformation gradient F is defined as

dx = F · dX with F = gi ⊗ Gi, i = 1, 2, 3 (7)
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In Eq. (7), the spatial co-variant basis vectors are identified from Eq. (6) as

gα = ϕ̄,α +

(
ξ +

1
2
γξ2

)
m,α +

1
2
γ,αξ

2m α = 1, 2, g3 = (1 + γξ) m (8)

3. Discontinuity enhanced kinematics

As stated above, the primary focus of the current work is to develop a shell element formulation
able to represent arbitrarily many delaminations in combination with also a through the thick-
ness crack within one and the same element. Consequently, the above basic shell kinematics
need to be extended to allow for displacement and director discontinuities across each delami-
nation interface ΓS D

k
and across the through thickness crack interface ΓS C . For this purpose, we

propose herein a kinematical extension in line with the XFEM (or partition of unity concept)
such that the deformation map into the spatial deformed configuration is subdivided into one
continuous and one discontinuous part as

x(ξ) = ϕc(ξ) + ϕd(ξ) (9)

where the continuous part takes on the same form as the underlying non-delaminated shell
element.

ϕc(ξ) = ϕ̄c(ξ̄) + ξmc(ξ̄) +
1
2
ξ2γ(ξ̄)mc(ξ̄) (10)

As for the discontinuous part ϕd, it is considered to consist of at most three parts; ϕD represent-
ing all the possible delaminations, ϕC representing the through thickness crack discontinuity and
ϕDC which – where applicable – takes into consideration the interaction between delaminations
and the through thickness crack. As a consequence, we have

ϕd = ϕD + ϕC + ϕCD (11)

with:

ϕD =

Ndel∑
k=1

HS

(
S D

k (X)
) (
ϕ̄Dk(ξ̄) + ξmDk(ξ̄)

)
= HD

S k

(
ϕ̄Dk + ξmDk

)
(sum over k) (12)

ϕC =
∑

I∈Nenr

N I[ξ1, ξ2]ψI[ξ1, ξ2]
(
ϕ̄I

C + ξmI
C

)
(13)

ϕCD =

Ndel∑
k=1

∑
I∈Nenr

HS

(
S D

k (X)
)

N I[ξ1, ξ2]ψI[ξ1, ξ2]
(
ϕ̄I

CDk
+ ξmI

CDk

)
(14)

It should be noted that the pure delamination enrichment in Eq. (12) follow the approach pro-
posed in Reference [1], consisting of a sum of enrichments – one for each delamination Ndel

– according to the XFEM concept, however restricted only to discontinuous enrichment of the
midsurface placement and the director field. Here,HS(S D

k (X)) = HD
S k

is introduced as the stan-
dard Heaviside function pertaining to the particular delamination surface ΓS D

k
where S D

k is an
associated level set function defining the position ξ̄k (in thickness direction) of this surface. In
particular, S D

k is the signed distance function to the delamination interface k such that, for the
current approach where we restrict the initial director field to coincide with the outward normal
vector, it can be defined simply as

S D
k = ξ − ξ̄k whereby

∂ S D
k

∂ X
= M (15)
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where M is the normal to each delamination surface in the reference configuration. Further-
more, ϕ̄Dk and mDk are approximated in a normal fashion using standard quadratic shape func-
tions.

In addition to this, we add the enrichment to describe a through-thickness crack ϕC in the case of
no delaminations. Here, we follow the procedure proposed initially by Larsson et al. [3] further
extended in Mostofizadeh et al. [7]. Thus, the ’shifted’ form of the Heaviside function ψI is
utilised to realise the strong discontinuity. Hence, in analogy with e.g. Zi and Belytschko [8],
we let Nenr denote the set of enriched nodes to describe the through-thickness crack and we have
the shifted enrichment function (associated with such each node I) defined as

ψI[ξ1, ξ2] = HS[S C[ξ1, ξ2]] −HS[S C[ξI
1, ξ

I
2]] (16)

where in this case S C is a different level set function (in-plane in contrast to S D
k which is de-

fined out of the shell plane) and where ϕ̄I
C and mI

C are the degrees-of-freedom representing the
discontinuous parts of the midsurface displacement and director field respectively. More pre-
cisely, the argument of the Heaviside function, the level-set function S C[ξ1, ξ2] defined on D0 ,
is considered monotonic so that

S [ξ1, ξ2] < 0 if Φ[ξ1, ξ2] ∈ D−0
S [ξ1, ξ2] = 0 if Φ[ξ1, ξ2] ∈ ΓS

S [ξ1, ξ2] > 0 if Φ[ξ1, ξ2] ∈ D+
0

(17)

where D0 is the local enrichment domain in the vicinity of the crack. It is remarked that the en-
riched reference domain D0 is here defined only by the finite elements intersected by a through-
thickness crack (or possibly a cohesive segment) since the enrichment functions in Eq. (16)
are defined so that the discontinuous enrichment vanishes at the (corner) nodes. D0 is consid-
ered subdivided into a minus side D−0 and a plus side D+

0 by the discontinuity line ΓS C with
corresponding normal vector NS C . Please note that the level-set function S C has the convected
midsurface coordinates as arguments, thereby restricting the current formulation to through-
the-thickness shell fracture.

The above two enrichments ϕD and ϕC are sufficient to obtain a formulation that can handle ei-
ther multiple delaminations or a through thickness crack in one and the same element. However,
since we are after a formulation which is also able to treat the combined case where multiple
delaminations and a through thickness crack can coexist, yet another enrichment ϕCD as given in
Eq. (14) is required. This is in analogy to the case of at least two intersecting through-thickness
cracks, as described by Daux et al. [9]. In essence, the additional enrichment function is a
product between the ones for the delaminations and the one for the through-thickness crack.

The procedure for establishing the shell element formulation based on these kinematics follows
exactly Reference [1], i.e. first the deformation gradient F is established based on the extended
kinematics which takes the general form:

F =
(
ϕc(ξ) + ϕD(ξ) + ϕC(ξ) + ϕCD(ξ)

)
⊗ ∇X = Fb + δS D

k
FD

k + δS C FC (sum over k) (18)

where
Fb = gb

j ⊗ G j, j = 1, 2, 3 (19)
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and where gb
j are the spatial co-variant basis vectors and

FD
k =

(
ϕ̄Dk + ξmDk + ϕ̄CDk + ξmCDk

)
⊗ M (20)

FC
k =

ϕ̄C + ξmC +

Ndel∑
k=1

∑
I∈Nenr

HD
S k

N I[ξ1, ξ2]
(
ϕ̄I

CDk
+ ξmI

CDk

) ⊗ NS C (21)

Please note that δS D
k

and δS C refers to Dirac delta functions defined with respect to each respec-
tive discontinuity (crack) surface and that:

ϕ̄CDk =
∑

∑
I∈Nenr

N IψIϕ̄I
CDk

, mCDk =
∑

∑
I∈Nenr

N IψI mI
CDk

, ϕ̄C =
∑

∑
I∈Nenr

N Iϕ̄I
C , mC =

∑
∑

I∈Nenr

N I mI
C (22)

This is then inserted in the classical momentum balance, yielding the stress resultant shell for-
mulation including interface parts where the (continuous) traction is integrated over each de-
lamination surface as well as over the through-thickness crack surface.

4. Numerical examples for validation of the model

To verify the proposed kinematics, two numerical examples are presented. The first example
concerns multiple delaminations of a cantilever beam. The second example verifies the capa-
bility of the element to represent a crack through the laminate thickness. In the examples, a
transversely isotropic elastic material model has been used with material parameters according
to Table 1. Furthermore, all laminae have a zero degree orientation.

EL 126 GPa
ET = ETT′ 10 GPa
GLT = GTT′ 8 GPa
νLT = νTT′ 0.29

Table 1. Material parameters used for the numerical examples.

4.1. Cantilever beam with multiple delaminations

The problem consists of a cantilever beam, composed of seven laminae, which has six active
delaminations. The length of each crack varies and is given through the parameter a = 30 mm,
cf. Figure 3 for details. The length of the beam is L = 200 mm, has a height of h = 3 mm and a
width of w = 15 mm. The beam is subjected to a constant edge load t at the top of the beam (at
its free end) with the magnitude 10 N/m in the vertical direction.

t

6a

a

L

h

Figure 3. Geometry of the beam with multiple (6) delaminations with different lengths.

In Figure 1, the deformation pattern of the beam has already been shown illustrating that the
element can handle multiple delaminations and a comparison with beam theory is shown in
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Figure 4. Comparison of FE solution with beam theory where the shell results are overlayed by the analytical
results (squares) based on Euler - Bernoulli theory.

Figure 4. It can be seen that the obtained solution corresponds well with beam theory, thus
verifying the kinematics of the element. The error in maximum displacement is less than 0.5 %
between the two and it is clear that also the other laminae follow the analytical solution.

4.2. Cantilever beam with through the thickness crack

The second example illustrates the capability of the prosed element to handle a crack through
the thickness thus cutting the element in two. The studied problem is a cantilever beam of the
same geometry as in the previous example; however, in this case only with two 0◦ laminae.
In this case, there are no delaminations. Instead, there is one crack that runs along the whole
length of the beam cutting it into two cantilever beams, see Figure 5. The crack is placed at a
distance of b = 6 mm from the edge thus defining the width of the smaller beam. The beam
is subjected to a prescribed vertical displacement in the corner of the beam. Euler-Bernoulli

b

L

w

u

Figure 5. Geometry of the cantilever beam, seen from above, with a through the thickness crack along its entire
length.

beam theory gives that the reaction force necessary to vertically move the free edge a distance
of p = 1 mm is 0.6379 N. The corresponding value obtained from simulation is 0.6384 N
which gives a relative error of 0.03%. This verifies that the shell element i capable of accurately
representing a through the thickness crack. In Figure 6, the displacement of the beam is shown
and it is clear that it is cut into two pieces. Note also that the sub-triangulation of the elements
(those cut by a crack) is shown.

Figure 6. Displacement field for the cantilever beam with a through the thickness crack (magnification factor
= 10).
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5. Conclusions

A XFEM based shell element formulation has been proposed in this contribution. The kinemat-
ical representation is capable of handling multiple delaminations and a through-thickness crack
present at the same location in the laminate. The formulation involves three different types of
displacement enrichments to make sure that each delaminated subsection which is also cut by a
through thickness crack can be individually represented without (unphysical) kinematical cou-
plings to the surrounding structure in the laminate. In this contribution, the proposed modelling
framework has been validated against pure deformation modes, in terms of either multiple de-
laminations or a through-thickness crack. The framework is however more general whereby the
next step will be to identify and perform similar validations also for a combined case.
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