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Abstract 
Flat rectangular composite plates made of carbon fiber/epoxy unidirectional tape layers are 
considered. The plates have symmetric lay-up, with D16 and D26 elements of stiffness matrix 
being not neglected. Buckling under combined loading is considered. The main purpose of the 
paper is to explore and reveal the peculiarities inherent in the case. The characteristics of the 
buckling curves such as convexity and piecewise-smoothness are discussed. The points of 
slope discontinuity are treated as the points of duplicated buckling eigen values, where 
corresponding switch of buckling modes participating in the load/modes interaction occurs. It 
is also indicated how the bending-twisting terms are influencing the curves. Some formulas 
for calculating characteristics of the curves are derived. Numerical example of a thin rather 
long composite CFRP (carbon fiber-reinforced plastic) plate is presented.  

 
 

1. Introduction 
 

Buckling of composite plates under combined loading (shear, compression, in-plane bending) 
was considered by many authors in the framework of the Classical Laminate Plate Theory, 
both for the case of specially-orthotropic material and for the case of the so-called flexural 
orthotropy (when the bending-twisting coupling terms in the buckling equation proportional 
to D16 and D26 elements of the bending stiffness matrix are assumed to be neglected). As 
papers in the field we indicate [1-5], where corresponding references may be found.  
 
In [3] the design formulas for a long composite plate made of specially-orthotropic material 
are presented. The formulas are derived basing on regression analysis of buckling data 
obtained from a very accurate Rayleigh-Ritz method. 
 
As papers, where the bending-twisting coupling is also taken into account, we mention [1, 2, 
4, 5]. In the numerous papers of Nemeth (see [1-2] and papers referenced there) the influence 
of the flexural anisotropy to buckling interaction is numerically explored in detail. The paper 
[4] details a series of tests carried out to investigate the behavior of a number of optimized 
fiber composite plates of differing geometry, simply supported along two edges and built in 
along the other two, subject to a varying combination of shear and in-plane bending, for 
which no theoretical solution exists, and assesses the suitability of analytical techniques and 
finite element analysis to predict this behavior. 
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In [5] the Balabukh formula is indicated, approximating the shear-compression buckling 
interaction curve in case of flexural anisotropy. The formula is based on quadratic 
interpolation of the interaction curve using compression-only and shear-only buckling limits. 
In the case of shear there are two limit values, depending on direction of shear loading.  
 
The book [6] (chapter 2) gives a review of the theoretical status of the problem in general, 
without considering peculiarities of composite materials. Some theoretical results of the book 
create a basis for generalization of them to the composite structure case. In particular, the 
Papkovich theorem (see [7]) states a useful feature of the interaction curve, namely the set of 
points corresponding to stable structures is a convex one.  
 
The present paper presents some theoretical consideration of the buckling interaction 
phenomena and a numerical example illustrating, for the case of composite materials, the 
features and proposed approaches.  
 
 
2. Buckling interaction curves and their creation. 
 
As it has been indicated in the Introduction, several approaches are used for creation of the 
buckling interaction curves for rectangular plates.  
 
Basing on the expression for the buckling eigen value, the formulas for slopes of the buckling 
interaction curves are derived. Below we denote by xyyx NNN ,,  the normal force flows in x 
and y directions and the shear flow in x-y plane.  Using the regular loading sign convention of 
[8], the formulas are: 
 

shear – compression case          
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where the integrals are calculated over the plate surface (the coordinate axes are parallel to the 
corresponding lateral sides of the plate), the plate is compressed in x direction, w is the 
deflection, 
 

       shear – in-plane bending case       
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where it is supposed that the in-plane bending at plate sides parallel to y axis is created by the 
distributed normal force flow  
 

b
yNN xx 2

)0(=                                                        (3) 

 
where b is the dimension of the plate in y direction, the origin is supposed to be at the center 
of the plate. Using the above formulas for derivatives acting at isolated cases (i.e., 
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compression-only and shear-only), the following formula for the compression-shear case is 
derived (in fact, this is a step ahead from the Balabukh formula for including the interaction 
curve derivatives at separate loadings): 
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where the subscript 0 means the eigen value for one loading, 01 corresponds to the shear 
eigen value in one (considered) direction, 02 corresponds to the shear eigen value in case of 
loading in opposite direction (it has the “-“ sign). In fact, (4) gives xN  as a fourth power 
polynomial of xyN . In (4) the quantities p and q are determined as follows: 
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where /

1
/

0 , ff  are the derivatives of the buckling interaction curve )( xyx NN  at points 
0=xN  (pure positive shear) and 0=xyN  (pure compression), respectively.  

 
Formulas similar to (5) may be easily derived for other combinations of loadings. 
 
One more option for determining the buckling interaction curve is to use the buckling 
deflection fields of separate loadings for Galerkin-type approach. For example, for 
compression-shear loading one may take the buckling modes for pure compression ),(1 yxw  
and for pure positive shear ),(2 yxw . The modes satisfy both essential and natural boundary 
conditions. Due to that the Galerkin approach is applicable. Making usual Galerkin analysis 
with these two modes only, one may obtain the corresponding quadratic algebraic equation 
for eigen values. Then, taking the lowest solution of the equation, one obtains the eigen 
value in case of interaction. The only information necessary for such analysis is the eigen 
modes/values for separate loadings. At the below chapter there will be an example of the 
approach presented, the approach is mentioned as the “special Galerkin-type approach”.   
 
It should be also noted that the modes interacting under combined loading may be different 
at different portions of the buckling interaction curve. This case may occur when there is a 
multiple eigen value for some combination of the loadings. At such a point there is a switch 
of the interacting modes and the curve slope may not be continuous. The example of the 
below chapter will demonstrate the feature.  
 
Observation of the known Papkovich theorem leads to a conclusion, that it is valid for 
composite plates also.   
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3. Numerical results 
 

The proposed approaches have been used for a plate of t300/5208 tape material with 
symmetric +/-45° lay-up. The tape thickness has been 0.125 mm, with the total plate thickness 
being 2 mm. The plate dimensions have been 200*600 mm. The elastic modules of the 
material have been taken from http://composite.about.com/library/data/blc-t300-5208.htm , 
they have been of the following values: 
 

T300/5208 Carbon/Epoxy Unidirectional Prepreg 
Manufacturer  Hexcel 

Fiber  Matrix  Form  

T300 Carbon 5208 Epoxy UD 

Vf  rho  tply  Temp  Cond  

0.70 1.60  22.2 Dry 

 0.058  72.0  

E11  E22  G12  nu12  

181 10.3 7.17 0.28 

26.3 1.49 1.04  

Submitted by: Barry Berenberg, About Composites/Plastics  

Table 1. Properties of the T300/5208 material. 

Room temperature conditions have been considered. All eigen values have been normalized 
using the value of 50 N/mm. High-accuracy numerical solution has been used for comparison 
with proposed approach and calculation corresponding derivatives. The plate has been loaded 
by compression in x-direction and by shear.  
 
The simple compression eigen value has been equal to 1.23, with the derivative /

0f  being 
equal to -0.169. The lowest shear eigen value has been equal to 1.39, with the derivative /

1f  
being equal to -1.665. The lowest shear eigen value for the case of opposite loading has been 
equal to 1.80 (it should be taken with “-“ in the above formulas).  
 
The buckling modes 1 and 2 for pure compression (out-of-plane displacements) are shown in 
the Figs. 1 and 2, respectively. The maximal positive displacement is red, the maximal 
negative displacement is white. 
 

 

 

http://composite.about.com/library/data/blc-t300-5208.htm
mailto:composite@aboutguide.com
http://composite.about.com/
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Fig. 1. First mode for pure compression.  

 

 
 
Fig. 2. Second mode for pure compression. 
 
 
The buckling modes for pure shear are shown in the Figs. 3 and 4, respectively. 
 

 
 
Fig. 3. First pure shear mode. 
 
 

 
 
Fig. 4. Second pure shear mode. 
 
It has been identified that for Nx/Nxy = 0.80 the lowest eigen value 1.14 is duplicated (see 
Figs. 5 and 6). Calculating the slope of the curve Nx(Nxy) according to (2), we obtain two 
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values for them, namely -1.05 and -1.19 (13.3% difference). The first value corresponds to the 
mode of Fig. 6, the second value corresponds to the mode of Fig. 5.  
 

 
 
Fig. 5. First duplicated mode with eigen value 1.14. 
 

 
 
Fig. 6. Second duplicated mode with eigen value 1.14. 
 
Observing the Figs. 1-6, one may say that Fig. 5 could be some combination of Figs. 2-3, and 
Fig. 6 could be some combination of Figs. 1, 4. The deflections of the indicated pairs have 
been used for the above-described special Galerkin-type approach.   
 
In the Fig. 7 the results for different approaches are shown. It is seen that there is a 
considerable difference in interaction curves, when the flexural anisotropy (bending-twisting 
coupling) is taken and not taken into account. The use of (4)-(6) gives approximately two 
times closer results to high-accuracy numerical solution ones, as compared to the Balabukh 
formula. The (4)-(6) approach gives accuracy about 1%.  Both Balabukh and (4)-(6) 
approaches give the curves coming below the high-accuracy solution. The special Galerkin-
type approach gives critical force flows slightly higher (up to 1-3%) than for the high-
accuracy solution. The level of closeness to the high-precision numerical curve is higher for 
interaction of mode1-compression and mode1 – shear, rather than for the mode2-compression 
and mode1 – shear, especially close to the switching point.  
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Fig. 7. Buckling interaction curves. 
 
 
4. Conclusions 

 
The presented results demonstrate some new ways of analysis of predicting buckling of 
composite plates under combined loading. The approaches allow creating the buckling 
interaction curves using the information on separate loading solutions only.  
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