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Abstract  

Genetic Algorithm and exhaustive search techniques identify balanced symmetric stacking 

sequences that minimise elastic energy to produce optimal structural efficiency under 

combined loading. Constraints are added to account for use of standard ply angles, laminate 

design rules and damage tolerance. The damage tolerant strength constraint produces a bi-

level optimization problem: surface plies are orientated to sufficiently minimise energy 

available for sublaminate buckling driven delamination propagation; core plies are 

orientated to maximise stiffness in response to a uniaxial load case. The proposed 

methodology demonstrates that current, standard ply angle, aerospace designs can be near 

optimal for undamaged strength. However, continuous angles and relaxation of design rules 

offer significant scope for improved damage tolerance.  

 

1. Introduction  

 

Verchery [1] has shown that Netting analysis, in which the fibres within a laminate are 

aligned in principal directions to carry principal stresses, can be treated as a limiting case of 

Classical Laminate Theory. His approach indicates that designs with fewer than three fibre 

directions produce mechanisms when subject to small disturbances in loading.  For example, 

fibres within a cross-ply laminate, Fig.1 (a), cannot sustain shear load; Netting analysis 

reveals that this laminate becomes a mechanism when subject to shear because the associated 

compliance matrix is singular.  By similar reasoning, angle-ply laminates, Fig. 1 (b), cannot 

support bi-axial load. These concepts reveal the reasoning behind established laminate design 

practice in which fibres are placed in four principal directions (0°, +45°, -45° and 90°).  Such 

laminates provide a level of redundancy in load carrying whilst allowing for the 

manufacturing requirement of balanced angle plies, Fig. 1 (c).   

 

However, Netting analysis leads to laminate designs in which the stresses in fibres are limited 

to some value associated with failure, i.e., fully-stressed fibre design. It ignores the effect of 

damage in the resin matrix, which may occur within (intra) or between (inter) plies.  It also 

assumes pristine material properties and ignores the influence of damaging events such as 

impact. Since it is well known that in compressively-loaded laminates, the effect of 

delamination damage can reduce strength by over 60%, consideration of such damage during 

laminate design is of critical importance. In this paper, we aim to incorporate the fully 

stressed (Netting) design principle whilst allowing for damage by simultaneously (i) 

minimizing the elastic energy within the laminate for a given loading and (ii) meeting the 

required damage tolerant strength of the laminate. 



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

2 

 

 
Figure. 1  Netting analysis principles applied to (a) cross-ply laminate carrying bi-axial load Nx and Ny (b) angle-

ply laminate carrying shear load Nxy and (c) 0°, +45°, -45° and 90° laminate carrying general loads Nx, Ny and 

Nxy. In each case, the simple truss can be used to represent the loading of fibres. 

 

2. Netting Analysis and Minimisation of Elastic Energy 

  

Genetic Algorithm (GA) and exhaustive search techniques are used to find the fibre angle 

distribution that most efficiently carries a combined (axial, transverse, shear) loading whilst 

satisfying laminate design rules and Damage Tolerance (DT) constraints. The structural 

efficiency of a given volume of fibrous layers is assumed to be given by its Hookean Strain 

Energy as is explained in the following.  

Assuming symmetric, balanced laminates (ie. B = 0 and A13, A23 = 0) and a state of plane 

stress (             , classical laminate theory gives the in-plane load-strain relationship as 
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where   ,   ,     and   ,   ,     are the in-plane axial, transverse and shear loads per unit 

width and corresponding laminate strains, respectively. The     terms represent the in-plane 

stiffnesses and subscript ‘L’ denotes laminate as opposed to sublaminate variables.  

The elastic energy for a linear elastic solid is given by 

    
 

 
∫              (2) 

Then from Eq. (1) 

    
 

 
∫           (3) 

Constant ply thickness is assumed in order that a DT strength constraint can be applied during 

optimisation. Working per unit width allows for laminate plate geometry to be ignored and for 

strain energy per unit area to be used to observe the effect of fibre angle distribution on 

laminate elastic energy. Hence given that σ = N/TL (TL is laminate thickness) and dV = TLdA, 

    
 

 
∫                    (4) 

and thus the elastic energy per unit area is  
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Netting analysis assumptions remove the coupled compliance a12 in Eq. (5) and give 
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according to Netting analysis assumptions Fig. 2 shows that when  
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the thickness of layers is optimal (fully stressed). In this case, Eq. (5) gives 

     
    

 
(         ) (8) 

where    is minimised for the case εlayers = εult. This confirms minimisation of elastic energy 

in a laminate of fixed thickness maximizes undamaged laminate strength. 

 

Figure 2. Netting analysis for the fully stressed design of 0º, 45º and 90º laminate layer thicknesses for general 

loading seen in Fig.1 (c). εult is the failure strain of a ply in the direction of fibres. 

3. Damage Tolerance Strip Model 

The reduction in strength of compressively loaded structures containing multiple, impact-

damage-derived delaminations is currently limiting weight reduction in aerospace composite 

structures. Under compressive loading, layers above such delaminations (sublaminates) can 

buckle, driving delamination growth (see Fig. 3) and ultimately causing failure. Hence it is 

necessary to account for this failure mechanism when deriving optimal laminate designs. 

 

Figure 3. (a) Sublaminate of diameter l created by delamination following an impact. (b) Buckling of 

sublaminate ε ≥ ε
C
 and (c) propagation of delamination ε ≥ εth. Here ε

C
 is the sublaminate buckling strain and 

axial delamination growth in (c) could initially occur laterally once ε equals the threshold strain εth. 

The Strip model [2] is an analytical method based on this sublaminate-buckling-driven 

delamination propagation mechanism and is used to calculate an axial threshold stress σth 

below which delamination propagation will not occur. The strip model compares membrane 

and bending energy before and after propagation in the post-buckled system described in 

Figure 3 to calculate a Strain Energy Release Rate (SERR) GI, 

    
 

 
(     (         (9) 

Here A is the sublaminate axial stiffness and is equal to A11 if A11 ≥ A22 and A22  otherwise, ε
C
 

is the sublaminate axial buckling strain and ε is the applied uniaxial strain. Delamination 

propagation is assumed to occur when there is sufficient applied strain εth to make GI equal to 

the Mode I fracture toughness of the resin matrix (GIC);  

(a) (b) (c) 
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As the severity of an individual impact is unknown a priori and will result in uncertain 

delamination sizes and depths the worst case (minimum) εth must be assumed at all interfaces. 

(The depth of delamination considered to be at risk of propagation is limited to 25% of the 

laminate thickness as the thicker sublaminates associated with deeper delaminations will not 

buckle open and allow Mode I propagation to occur [3].) ε
C
 is the only variable dependent on 

delamination size in Eqs. (9 and 10). Hence, the uncertainty in damage morphology can be 

mitigated by finding the minimum value (with respect to ε
C 

) of εth in Eq. (10). Implicit 

differentiation of Eq. (10) with respect to ε
C
 gives 
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As 
    

      is sought and GIC is constant (and thus  
    

     ) rearrangement of Eq. (11) gives 

    
   

 
 (12) 

Substitution into Eq. (10) then gives the minimum value of εth and multiplication by the 

laminate modulus Exx gives the required minimum threshold stress, 

             √
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As Eq. (13) is independent of ε
C
, minima may correspond to unrealistically large delamination 

diameters and thus can be a very conservative lower bound on εth for realistic damage e.g. 

(BVID). Note that Eq. (12) guarantees that delamination growth will be stable i.e. propagation 

will only occur with increasing strain (see [4] for full details and derivation). The derivation 

of Eqs. (9 and 10) includes the following simplifying assumptions: (1) loading is uniaxial and 

compressive; (2) energy for propagation is only available from the thin sublaminate (thin-film 

assumption); (3) Mode I fracture dominates propagation; (4) delaminations at each interface 

and their subsequent propagation under compressive load can be treated in isolation with the 

lowest of the derived propagation stresses σth taken as the overall laminate residual strength. 

4. Optimisation for Minimum Strain Energy and Damage Tolerance 

4.1 Objective function and problem description 

The loading on an aerostructural panel is typically dominated by an axial component. 

However, lateral loading can occur and may induce significant shear and transverse 

components. As described in Section 2 optimal laminate designs should distribute fibres to 

meet theses loads thereby producing an efficiently loaded structure. This equates to 

minimising elastic energy for a given laminate thickness. For both continuous and standard 

ply angle laminates and subject to the constraints defined below, an exhaustive search 

technique and the Matlab Genetic Algorithm (GA) function ‘ga’ [5] are used to find an 

optimal fibre angle distribution and stacking sequence through minimisation of UA in Eq. (5). 

For a given laminate thickness, subject to in-plane loading per unit width ( ), the GA creates 

an initial random population of candidate stacking sequences and then calculates a scored 

fitness value for each. The most energy efficient designs are chosen and used to determine the 

next generation/population of stacking sequences. (Eliteness, crossover and mutation all 

feature in ga.) A nonlinear constraint algorithm is employed to ensure that each new 

generation of stacking sequences meets a set of constraints derived in Section 4.2. Iteration 
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continues until a maximum number of generations or specified minimum relative change in 

best fitness value is reached. 

4.2 Laminate design and damage tolerance constraints 

Aerospace laminates are subject to certain manufacturing and design constraints. Zero in-

plane to out-of-plane coupling is enforced for standard angle laminates by allowing free 

choice of ply angles in one half of the laminate only. For continuous ply angle laminates it is 

achieved via use of the fully uncoupled Winckler [6] ply block [θ/-θ/-θ/θ/-θ/θ/θ/-θ]  

(henceforth defined as (θ)w) and symmetry in α (Fig. 4). Balance of standard ply angle 

laminates is enforced by the constraint A13L = A23L = 0. For continuous ply angles, balance is 

again achieved via Winckler sequences. When laminate design rules [7] are applied: (1) 

maximum ply grouping is constrained to be less than 4 plies of the same orientation. This 

prevents the formation of large inter-laminar shear stresses that may drive free edge failure. In 

the continuous angle laminates, ply groups are assumed to be sufficiently separated by an 

angular separation of ±12.5° (see Fig. 4). (2) minimum ply percentages of 10% of each of 0º, 

±45º and 90º ply angles safeguard against uncertainty in loading. Damage Tolerance (DT) is 

ensured by allowing the GA to accept a stacking sequence as a candidate only if σth exceeds a 

minimum stress constraint determined by Eq.(13).  

 
Figure 4. Details of candidate stacking sequences for optimisation (a) two and (b) four variable continuous ply 

angles without constraint. (c) and (d) alternative stacking sequences available when laminate design rule 

constraints are active. The DT constraint (where applied) affects the outer 25% of layers. 

5. Results  

 

Stacking sequences with two, three and four continuous ply angles (see Fig. 4) are compared 

to laminates with standard ply angles; the maximum structural efficiency available while 

employing current laminate design rules is determined and scope for improvement 

highlighted. Material properties E11 = 145 GPa, E22 = 8.9 GPa, G12 = 4.2 GPa, ν12 = 0.35, GIC 

= 500 J/m
2
 and ply thickness = 0.125 mm are assumed. Elastic energy, normalised by the sum 

of the squares of the load components (after Eq. 5), is used to compare the structural 

efficiency of stacking sequences for varied combined loadings; 

 

  ̅  
  

(  
    

     
 )

 (14) 

 

For variable loading ratios (and both with and without laminate design rules) Figs. 5(a) and 

(b) show the variation of minimum normalised elastic energy (structural efficiency) of 
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laminates optimised using either continuous or standard ply angles. Figures 5(c) and (d) show 

standard angle ply percentage variation for varying ratios of axial to transverse and shear 

loading, related to the curves of Figures 5(a) and (b). For the major part of the continuous ply 

curves in Fig. 5(a) and (b) stacking sequences described by Fig. 4(a) and (b) are sufficient to 

produce minimum Ū. However, when one load component and hence one fibre orientation 

dominates, stacking sequences from Fig. 4 (c) and (d) become optimal.  
 

   

 

Figure 5. Normalised elastic energy Ū of optimal laminates with continuous and standard ply angles for varying 

loading ratio (a) Nx/Ny and (b) Nx/Nxy. Standard laminate ply percentages for varying loading ratio (c) Nx/Ny and 

(d) Nx/Nxy. Curves are shown for constrained (with laminate design rules) and unconstrained (without) cases. 

 

Figure 6(a) compares the elastic energy of optimum stacking sequences of continuous (see 

Fig. 4) and standard ply angles for uniaxial compression (Ny = Nxy = 0) subject to a minimum 

DT strength constraint. The stacking sequences relating to peak DT stress for standard ply 

angle laminates are [±452/02/902/08]S and [04/904/45/04/-45/02]S for the unconstrained and 

constrained cases respectively. Peak DT stresses are 350 MPa and 305 MPa respectively. 

Figure 6(b) gives the optimum ply angles for continuous laminates corresponding to the 

curves in Fig. 6(a). The stacking sequences relating to peak DT stress for 4 continuous ply 

angle laminates are: sequence (b) in Fig. 4 with θ1 = 20°, θ2 = 70°, ψ1 = ψ2 = 0° and sequence 

(d) with θ1 = 17°, θ2 = 73°, α = 0° and β = 12.5°. Maximum DT stresses are 350 MPa and 344 

MPa respectively. 
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Figure 6. (a) Normalised elastic energy Ū of optimum stacking sequences for constrained (dotted line) and 

unconstrained (solid line), laminates with increasing minimum damage tolerant strength. (b) Optimum angles for 

continuous designs in (a). Note that the ungrouping ply angle β is not plotted but is always ±12.5°. 

 

6. Discussion  

 

Under loading with a dominant component (and no DT constraint), Fig. 5 demonstrates that 

current design rules combined with standard ply angles allow for near maximum efficiency 

until the minimum ply-percentage rule becomes active. Worst-case structural efficiency 

occurs for loading ratios of Nx = Ny or 2Nx = Nxy with the exception that constrained standard 

ply angle designs are least efficient under pure shear loading (see curve maxima in Figs. 5 (a) 

and (b)). Hence care should be taken in specifying worst-case design loadings. Figures 5 (c)-

(d) illustrate that, as expected, optimal designs have fibres aligned with the applied loading 

i.e. 0º dominates for high load ratios. It is again evident that the minimum ply percentage 

constraint prevents full structural efficiency being reached for loadings with dominant axial 

components. Current ply percentage designs of 44/44/12 and 60/30/10 (percentage of 

0º/±45º/90º plies) are only an optimal choice of design when loading has a shear component 

(contrast Figs. 5 (c) and (d)), e.g. at loading ratios of approximately Nx/Nxy = 2 and Nx/Nxy = 3-

6 respectively. For other load cases e.g. biaxial loading (Fig. 5(c)) other ply percentages are 

more efficient. As per Netting analysis in Section 1, although limiting for structural 

efficiency, the ply percentage constraint is likely to improve resilience to intra-ply failures 

resulting from formation of mechanisms (Figures 1(a) and (b), [8]) and therefore its 

implementation is well justified. Results in Fig. 5 are given as ply percentages and so 

optimum efficiency may have been achieved by a number of unique stacking sequences. Peak 

unconstrained DT strength (see Fig. 6(a)) is achieved by orientating outer plies at ±70° and 

±20° and inner plies at 0°. The former strikes a balance (in Eq. 13) between sufficiently 

minimising A (sublaminate SERR) and maximising Exx to provide maximum laminate 

stiffness. The latter gives minimum elastic energy for uniaxial load. From netting analysis the 

continuous ply design has no redundancy and thus is better optimised but less robust than the 

standard ply stacking sequence. A maximum DT strength of 350 MPa is reached for both 

standard and continuous angle plies where no further improvement is possible. However, 

unconstrained continuous angles offer a slightly higher structural efficiency at maximum DT 

constraint. When ply grouping constraints are applied, the effect is to reduce the maximum 

DT strength, see Fig. 6(a). However, the reduction in achievable DT stress is considerably 

greater for the standard ply designs. It is conjectured that this discrepancy will increase for 

non-uniaxial loadings as the flexibility of the continuous ply angles will provide scope to 

more efficiently distribute fibres to the meet the applied loads. Delamination propagation is 
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currently limited to being stable (Section 2, [4]), a more stringent constraint than is required 

by regulation. Hence future work will consider unstable growth and any increase in DT 

strength that may be available. 

 

7. Conclusions And Future Work  

 

Using the principles of Netting analysis and fully stressed design, minimization of elastic 

energy through stacking sequence optimization has allowed identification of structurally 

efficient designs for flat plates. Subject to the standard laminate conditions of balance and no 

in-plane to out-of-plane coupling, two design cases have been considered. The first allows for 

up to four independent choices of ply orientation and the second restricts ply angle choice to 

0º, ±45º and 90º. Both cases are considered with and without constraint by standard laminate 

design rules. Results indicate that when laminate design rules are applied, standard ply 

laminates are close to matching the optimal structural efficiency of continuous ply angle 

designs for bi-axial and axial/shear loading cases without a dominant load component. When 

a damage tolerance constraint is imposed with pure uni-axial loading and no design rule 

constraints, both continuous and standard ply angle laminates offer a peak compressive 

strength of 350 MPa with little difference in structural efficiency. However, when constrained 

by laminate design rules, continuous ply laminates offer significant improvements in 

structural efficiency and the peak damage tolerance strength achievable relative to the 

standard angle design. The optimization and analysis methods implemented here are 

analytical in nature and thus have the computational efficiency required for early stage design. 

Future work will focus on: optimizing for an uncertain combined loading; incorporation of in-

plane failure and global buckling constraints and combined loading with a damage tolerant 

constraint. 
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