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Abstract  

A 13.5 meters prototype of blade designed by Cener for a 150 kW wind turbine machine, 

made with glass fiber and vinylester resin doped with carbon nanofibers, was manufactured 

by Grupo Antolín using a new technique called Light RTM. The blade was done as a 

monocoque structure with a PVC foam core. 

 

Indra and UPM have developed a methodology for instrumenting the blade with fiber optic 

sensors embedded into the structure during the manufacturing process. Two different sensing 

techniques were embedded into the blade: Fiber Bragg Gratings (FBG) and a plain fiber 

optic for Distributed Sensing using an Optical Backscatter Reflectometer (OBR). 

 

By means of a novel and robust automated technique based in strain field pattern recognition, 

a study of detectability of defects was performed for the blade under different load scenarios.  

Several static tests were conducted, including a test campaign with known artificial damages 

induced into the structure and the sensitivity of the technique was evaluated.  The results 

showed that every damages could be detected by using both sensing techniques. 

 

 

1. Introduction  

 

As the complexity of the structures increases, so do the physical and/or mathematical models 

that describe such structures as well as the techniques to ensure structural integrity during 

service life. At present various techniques for SHM (Structural Health Monitoring) for 

determining whether a structure is damaged at an early stage, are being developed by various 

research groups around the world. One of the proposed techniques is to detect subtle changes 

in the strain field by directly studying the correlations between different pairs of sensors. This 

technique is part of the philosophical SHM employing experimental data instead of 

deterministic models (such as the stiffness matrix, modal parameters, etc.). Experimental data 

are used for "training" or "learning" of different types of algorithms. The technique has been 

called "pattern recognition". Several authors have worked in recent years in the development 

of such techniques in order to predict the onset of damage in complex structures made of 

composite materials. In order to realize a dimensional reduction of the experimental data, and 
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filter useless or redundant data, a statistical technique called Principal Component Analysis 

(PCA) is adapted to pattern recognition. Nonlinear approximations like the Hierarchical 

Nonlinear PCA have been also applied in nonlinear problems [1], [2], [3], [4]. 

 

Regardless of the methodology used to analyze the data, the technique is based on a simple 

physical principle: the change in the local strain field and the local/global stiffness of a 

structure due to the occurrence of damage. Before applying different techniques of pattern 

recognition in a specific problem is important to consider whether the structure of interest, 

typical damages with similar severity to those expected during actual operation of the 

component, sufficiently alter the local strain field so that these changes are detectable with the 

proposed methodology. [3] 

 

A simple form of such verification is to study the behavior of different pairs of sensors 

attached or embedded in the structure deformation. This technique has been called differential 

strains. Damage causes a change in the overall stiffness and, for different applied loads, a 

change in the local field distortion. Therefore, the relationship between the measured strains 

between two sensors in the presence of a change due to the change in the distribution of 

strains. [4]. 

 

The object of this study is to show the system implemented in which Fiber Bragg Gratings 

(FBGs) as strain sensors, directly embedded into the blade during manufacture are used to 

identify changes in the local/global stiffness of the structure, as consequence of the 

appearance of different types of damage induced in the blade. [5]. 

 

2. Principal Component Analysis 

 

When performing experiments in the field of science, it is common to find a variety of 

systems in which the number of variables involved in the process can make the measurements 

become very complex. The main reason for this is that, in many cases, the relationships 

between variables may not be simple. An additional problem is how to represent the data 

when there are more than three variables since, visualize relationships between the different 

variables is more complex. Fortunately, in data samples where many variables are involved 

simultaneously, groups of variables often have similar trends as these groups may be 

“measuring” the same physical principle that governs the behavior of the system. In many 

physical systems, there are only a few “forces” that drive the system. When this happens, it is 

possible to take advantage of the redundancies, simplifying the problem by replacing a group 

of variables with a new single “virtual variable”. [6]  

 

PCA provides arguments on how to reduce complex data set to a smaller dimension and also 

reveals simpler patterns or “structures” that may be hidden under the data. The ultimate goal 

of the technique is to discern which data represent the most important dynamics of a particular 

system and which data, on the other hand, are redundant or just noise. This is achieved by 

determining a new coordinate space. This space is based on the covariance of the original data 

set. 

 

In all experiments, measurements were done using several sensors , during certain time 

interval  and, for a discrete number of experimental trials .  Then the information can be 

arranged in a tridimensional matrix . In order to apply a PCA study, this matrix must be re-

arranged in a proper way. This procedure is called ‘unfolding’. The most common way of 
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unfolding when batch monitoring is desired, is the form , also called ‘type D’ 

unfolding.  [7] 

 

When different variables with different magnitudes and units are present in experiments, may 

be desirable to treat the data to reduce the ‘scale effects’, as this can hide important 

information about the system. The most usual way to do it is by normalizing the data. 

Normalization includes centering and scaling but is often called just ‘scaling’. Centering deals 

with magnitude differences and scaling deals with differences in units. Several ways of 

normalizing information are reported on the literature. 

 

Once the data matrix has been unfolded and normalized  (if required), its covariance 

matrix is calculated. This square matrix measures the degree of linear relationships within the 

data set. The subspaces in PCA are defined by the eigenvalues and eigenvectors of the 

covariance matrix. 

 

                                                             (1) 

 

Where  is the covariance matrix, its associated eigenvectors are the columns of , sorted in 

descendent order according to the value of their eigenvalues, which are the diagonal terms of 

 (these column vectors are called principal components). The projection of the original data 

over the direction of the principal components  is represented by the ‘score matrix’  by 

the linear transformation given by: 

 

                                                            (2)   

 

Where  only contains the first  principal components.     

 

In order to use PCA like a pattern recognition technique, a baseline must be built firstly, by 

using data for a known healthy structure. Then, data for unknown structure conditions should 

be projected into the baseline model (equation 2). From these projections it is possible to 

calculate different damage indices and detection thresholds.   

 

Over the year, several variations, particularization and improvements to the PCA, have been 

developed in order to deal with specific problems. Perhaps, one of the most commons is the 

NLPCA, which allows to deal with nonlinear problems in a better way than linear PCA.  

 

The NLPCA may be considered as a nonlinear generalization of the standard linear PCA. This 

generalization is achieved when the variables are projected onto surfaces or curves instead of 

planes or lines (like in PCA). [8]  

 

As noticed by Scholz et al., NLPCA can be itself, subdivided in two different variations: 

normal NLPCA and h-NLPCA. The main difference between them is that h-NLPCA performs 

a dimensionality reduction by means of a hierarchical process. In this way, the data is 

decomposed in a PCA related way. The NLPCA is based on Multilayer Neural Networks.  

 

In NLPCA, the mapping into feature space is generalized to allow arbitrary nonlinear 

functionalities. By analogous to the linear mapping performed by normal PCA, expressed in 

equation 2, NLPCA seeks for a mapping in the form:      

 

       (3) 
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Where  is a nonlinear vector function (projection function), composed of r individual 

nonlinear functions. 

 

One of the most common statistical tools (also called ‘damage indices’) is the Q index, which 

indicates how well each sample fits the PCA model. The Q index is given by: 

 

      (4) 

 

3. Experimental setup 

 

To conduct this experiment, a prototype of 13.5 m long of a wind turbine blade was used. The 

prototype was designed by CENER as part of the Spanish National project called NeWind. 

The prototype was manufactured by the company “Moldeo y Diseño”. The UPM and INDRA 

worked together developing, manufacturing and testing a system to measure strains in wind 

turbine blades in real time and detect damages based on the strain measurements.  

 

For the damage detection system four optical fibers were used, each one, having six FBGs. In 

total, 24 sensors were used. The sensors were located with a longitudinal separation of 2 m 

between them. Two optical fibers were located in the intrados and two in the extrados of the 

blade. The fibers were located at 20% and 80% of chord from the leading edge, along the span 

of the blade. The layout of the sensors network can be appreciated in detail in Figure 1. 

Besides the FBGs, it was decided to install four plain fiber optics at the surface of the blade to 

be interrogated with the OBR and, in this way, obtain distributed strain measurements during 

the tests. The plain optical fibers were installed in same positions than the FBGs. 

 

The FBGs were interrogated with a Micron Optics SM130 and the plain optical fibers were 

interrogated with a LUNA OBR 4600. In order to multiplexing the OBR input, a LUNA 

FOS008 fiber optic switch 1 × 8 was used. 

 

Once the blade was instrumented, it was attached to metal ring which allows to install the 

assembly in the test bench. It is important to notice that all tests were performed with the 

blade in cantilever. The load was applied in different points depending on the specific test. 

The main goal was trying to emulate the real load distribution. An automatic system of load 

application based on water deposits was used.  

 

 
 

Figure 1. Sensors and damage locations. All units in mm. 

 



ECCM16 - 16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

5 

 

The tests discussed in this article consisted in loading the blade in flapwise configuration 

(pressure side to suction side (PTS) or, the same, intrados to extrados).  For the first test the 

blade was loaded up to 100% of the designed ultimate load. The procedure consisted in 

loading linearly until reaching a desired load level and, at this level, make a stop for 

measuring. The test started from 40% of the ultimate load. Each stop took 5 minutes, where 

all the measurements using the OBR were performed. For the first test, only stops were made 

at 50%, 60%, 70% and 100% of the ultimate load. The 80% and 90% stops were avoided 

fearing to damage the blade. The FBGs were interrogated during the duration of the whole 

experiments at a sampling rate of 5 Hz. Once reached the 100% of the ultimate load, the same 

procedure was repeated in order to unloading the blade. In both loading and unloading, OBR 

measurements were performed. 

 

The second test, originally consisted in loading the blade to failure in PTS configuration. 

However, it was decided that, if the blade does not fail at 130% of the ultimate load, another 

test (third trial) will be performed. This time, an artificial damage will be induced in order to 

“compare” the damaged condition with the healthy one. Because this condition happened, it 

was possible to perform a study to compare the healthy structure against a damaged condition. 

The idea that the blade could reach 130% of the ultimate load was based in all the known 

uncertainties involved in the design and manufacturing of these prototypes, which involved 

new design methodologies, materials and manufacturing technologies. 

 

The procedure was very similar to the procedure used for the first test. The load was increased 

linearly until, the desired load level was reached. Again, the starting point was chosen at 40% 

of the ultimate load. In this test, only stops were made at 70%, 80%, 90% and 100% of the 

ultimate load. It took three trials to break the blade. In the first one, the 130% of ultimate load 

was reached without any visible damage, then, as mentioned before, a third trial was 

performed, this time, inducing an artificial damage in the blade (D1). The first damage 

consisted in a cutting in the trailing edge, emulating a debonding. The cutting was located at 

2.5 m from the root as it is shown in Figure 53. The damage has 10 cm length, 3 mm width 

and a depth of 3 cm. Additionally, a transversal cutting was made. This was located at the 

intrados skin, behind the cap, at 7 m from the root. This cutting has 13 cm length, 3 mm width 

and 13 mm depth.  

 

During the loading stage in the third trial, there was an issue with the loading system when it 

reached 150% of the ultimate load and the test must be aborted. During the time in which the 

blade was loaded under 150% of ultimate load (more than 5 minutes), some visible damages 

(cracks) appeared in the surface of the blade in several positions. The exact locations of the 

cracks are presented in Figure 1. For this reason, the gathered data during loading stage was 

considered as one damage case (D1) and, the data gathered during unloading stage, was 

considered like a different damage case (D2, real damages). 

 

In order to have a third damage case, before performing the fourth trial, another artificial 

damage was induced in the blade. The third damage consisted in increasing the size of the 

transversal cutting. Both, depths and width were increased to 30 mm and 15 mm respectively.  

Finally, in the third trial, the failure occurs around 186% of ultimate load. 
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Figure 2. Experimental setup. 

 

4. Results 

 

All the experimental data matrices (unfolded and standarized) were “normalized” in order to  

have the same number of experimental measurements. Since all the experiment had different 

number of samples in function of time, for each one, one thousand points were took 

homogeneously distributed over the whole experiment (i.e. a modification of the sampling 

rate was performed in order to have the same amount of information for each experiment). 

This same procedure was used for the h-NLPCA study case.  

 

  
 

Figure 3. a) Q index for PCA model using the FBGs with damage thresholds for 95% and 99% of confidence 

(dashed line and solid line respectively). b) Q index for h-NLPCA model using the FBGs with damage 

thresholds for 95% and 99% of confidence (dashed line and solid line respectively). 

 

For the Q index plot, presented in Figure 3 a), it is possible to see how the indices 

corresponding to the beginning and ending of the loading process lie outside the confidence 

intervals. These regions are more susceptible to nonlinearities since in that part of 

experiments, the strains start to distribute through the structure and the interaction between 

the blade and the fittings (brackets, load introduction system, etcetera) is stronger during this 

process. Besides this, the low SNR of the data in this region causes a loss in the sensitivity 

and therefore, some unusual phenomena like the indices out of the confidence interval close to 

beginning and ending of the experiment (lower load magnitudes near zero) as it can be seen. 
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As it can be seen in figure 3 b), there is a better fitting of the model. Almost all the baseline 

indices lie under the damage thresholds. However, there still remain some issues in the 

extremes of the experiment (lower load magnitudes), where some indices lie between the 95% 

and 99% of confidence. In this opportunity, the indices associated to the damaged conditions, 

in general terms, fall between the 95% and 99% of confidence intervals. This a better result 

than the obtained with the PCA model, since in this case, it would be possible to guarantee the 

damage apparition with 95% of confidence. Again, the indices corresponding to the massive 

failure (from sample 800 onwards for D3) lie far away from the baseline and obviously, can 

be classified as a clear damaged condition. 

 

In this case, from the Q index point of view, it would not be possible to detect an abnormal 

condition clearly, with exception of the last samples for D3, which corresponds to the 

catastrophic failure of the blade and they are clearly out of all damage thresholds. 

 

For the distributed sensing, 9646 sensors were defined for the four optical fibers. Only data 

for the loading stage of the load spectrum were used because for the OBR no data were  

acquire during the unloading process since it was carried out in a continuously way without 

stops. 

 

In Figure 4 a) it is possible to appreciate how the indices corresponding to the damage cases 

lie outside the damage threshold. In this experiment by means of this index it would be 

possible to detect an abnormal condition clearly. There are a few outliers in the baseline 

which lie very close to the 99% threshold. However, it is not surprising since as mentioned in 

other sections, some spikes were found in some of the OBR measurements. These spikes were 

removed from data and some deviations from the baseline could be induced. 

 

As can be seen in Figure 4 b), the results for the h-NLPCA model are very similar to those 

obtained with the PCA model. All the indices associated to the damaged states are well 

classified as abnormal conditions falling out the damage threshold. In this case the Q index is 

conclusive. 

 

  
 

Figure 4. a) Q index for PCA model using the distributed sensing with damage thresholds for 95% and 99% of 

confidence (dashed line and solid line respectively). b) Q index for h-NLPCA model using the distributed 

sensing with damage thresholds for 95% and 99% of confidence (dashed line and solid line respectively). 
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5. Conclusions 

 

Both PCA and h-NLPCA models were built by using strain measurements gathered from 

FBGs and distributed sensing. During subsequent steps, experiments were performed 

inducing three damages to the structure.  All these experimental were projected into the PCA 

and h-NLPCA models and the Q index was calculated in order to achieve the first level of 

SHM. The effectiveness of the presented technique was tested using a real wind turbine blade 

13.5 meters long fully made of composite material. 

 

FBGs have shown to be very sensitive to small strain changes in the structure, which make 

them suitable for the proposed technique. However, in the dynamic case there are still issues 

to be solved to improve the technique. Distributed sensing shown to be more sensitive than 

discrete sensing because more sensors were used and OBR technique has higher resolution. 

 

It was possible to detect deviations between the baseline and the different damage cases in all the 

presented examples. The  index has shown to be very sensitive in this study. 
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