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Abstract
We review here the constitutive compatibility method for the identification of local elastic pa-
rameters based on full-field measurements. In this method, the statically admissible stress field
that can be related through the known constitutive symmetry to the kinematic observations is
sought through minimization of an objective function which measures the violation of constitu-
tive compatibility. After this stress reconstruction, the local material parameters are identified
with the given kinematic observations using the constitutive equation. The method has been
adapted to solve larger identification problems using a domain decomposition technique which
allows for reduced computational load and higher identification accuracy within subdomains.

1. Introduction

In this article, we illustrate the capabilities of the constitutive compatibility method (CCM)
which has been recently proposed [1] and which has been further developed in a domain de-
composition framework. The CCM is very well suited for use in cases where the material
properties are assumed spatially non-uniform (i.e. can vary point wise due to underlying mi-
crostructure). The advantages of the method include: (1) an uncoupling of the stress from the
material parameters in the identification process for isotropic materials; the stress field is first
reconstructed and the parameters are identified in a later stage (2) if the solution is not unique,
the CCM provides a family of stress fields (3) the regularization of the inverse problem can
be controlled through the definition of the stress search space (4) the method naturally fits in
a domain decomposition type strategy to allow large-data identification problems to be solved
through relatively low-cost eigenvalue problems over subdomains.

We present here the CCM and its domain decomposition implementation for the identification
of elasticity parameters in heterogeneous media. The domain decomposition strategy relies on
a partitioning of the solution into several solutions over subdomains obtained by assuming pure
Dirichlet boundary conditions. The solution over each subdomain is composed of families of
stress fields, each with a macroscopic part (that exerts traction over the boundary) and micro-
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scopic parts (that exerts zero traction over the boundary). The global stress field is then chosen
to maximize compatibility of the macroscopic parts over the interfaces and the material proper-
ties can be calculated from the reconstructed stress field and the kinematic measurements.

First, the inverse problem and the CCM are presented in Section 2. In Section 3 we describe
the multi-scale domain decomposition identification strategy. The multiscale approach is then
demonstrated in Section 4 through a large scale identification problem.

2. Constitutive compatibility

2.1. The inverse problem

Suppose Ω is a continuum whose reference configuration occupies the region of space bounded
by ∂Ω. The boundary ∂Ω is made of two sub-boundaries S f̄ and S ū such that ∂Ω = S f̄ ∪ S ū

and S f̄ ∩ S ū = ∅. Let the traction field f̄ be prescribed over S f̄ and the displacement field ū
be prescribed over S ū. Also, let σ denote the Cauchy stress tensor, u the displacement vector,
ε the infinitesimal strain tensor and n the outward unit normal to ∂Ω. The material behavior is
described by the 4th order stiffness tensor field K.

The solution (u, ε, σ) of the forward problem has to confirm three sets of equations:

• Kinematic admissibility:

ε(x) =
1
2

(∇ u(x) + ∇tu(x)),∀x ∈ Ω ; u = ū,∀x ∈ S ū (1)

• Static Admissibility:

divσ = 0,∀x ∈ Ω ; σ · n = f̄ ,∀x ∈ S f̄ (2)

• Constitutive Equation:
σ = K(x) : ε ∀ x ∈ Ω (3)

We introduce spaces C, S, and K defined as follows

• The space of kinematically admissible displacement C:

C(ū) = {v ∈ Vv | v = ū ∀ x ∈ S ū} (4)

• The space of statically admissible stress S:

S( f̄ ) = {τ ∈ Vτ | div τ = 0 ∀ x ∈ Ω, τ · n = f̄ ∀ x ∈ S f̄ } (5)

2



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

• The space of thermodynamically admissible stiffness tensor fields K :

K = {K ∈ VK | ε : K : ε ≥ 0 ∀ ε ∈ Vτ, ε = 0⇐⇒ ε : K : ε = 0} (6)

The inverse problem is to estimate the constitutive tensor field K based on information about

the boundary conditions ū and f̄ and kinematic field measurements over the whole domain.

2.2. Concept of constitutive compatibility of stresses

The key idea in the CCM is to prescribe the stress field to be compatible to the measured
displacement field in the sense of some assumed symmetries of the constitutive operator.

S
�
f̄
�

S
⇣
K̂, uex.

⌘

S
⇣
K̂, û

⌘

Ŝ
�
f̄
� S̃(f̄)

�̃

Figure 1. Different spaces involved in the constitutive compatibility method.

Let K̂ (⊂ K) be a thermodynamically admissible material stiffness tensor space with a specific
material symmetry. We denote the space of stresses that can result from the exact displacement
field uex through this material symmetry class as the constitutively compatible stress space,
S

(
K̂ , uex

)
,:

S
(
K̂ , uex

)
= {τ ∈ Vτ | ∃K ∈ K̂ , τ = K : ε

(
uex

)
} (7)

A viable solution to the inverse problem should belong simultaneously to both spaces S
(

f̄
)

and

S
(
K̂ , uex

)
. We call this intersection, S̃( f̄ ), the “solution stress space” (see Fig. 1).

In practice, û is reconstructed from noisy, spatially discrete data obtained from a DIC technique.
Thus, S

(
K̂ , û

)
is an approximation of S

(
K̂ , uex

)
. Also, we can only search for the stress in a

(finite-dimensional) subspace Ŝ
(

f̄
)

of the (most often infinite-dimensional) space S
(

f̄
)
. The

goal then, is to find the statically admissible stress field σ̃ ∈ Ŝ( f̄ ) with minimal distance to the

space of constitutively compatible stresses S
(
K̂ , û

)
.
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2.3. The compatibility condition for linear elastic isotropic behavior

Any stiffness tensor has a unique orthonormed basis of elastic eigenstates Pi and corresponding
moduli of rigidity λi such that:

K =

l∑
i

λiP
i
⊗ P

i
(8)

where λi ≥ 0 and P
i

: P
j

= δi j (δi j denotes the Kronecker delta, l = 3 for 2D problems). Let

K iso represent the space of isotropic linear elastic stiffness tensors. Assuming K ∈ K iso, its

eigen-system has a geometric multiplicity corresponding to two unique moduli of rigidity such
that the constitutive relation (Eq. (3)) can be rewritten:

σ = λ1ε1P1 + λ2

l∑
i=2

εiP
i

(9)

where εi are the strain components when projected over the basis of eigenstates.

Thus the stress state σ lies in the (P
1
,

l∑
i=2

εiP
i
) hyper-plane which is defined only by the kine-

matic data. We can define P̂
⊥
(
x
)
, a tensor field orthogonal to the (P

1
,

l∑
i=2

εiP
i
) hyper-plane.

The solution stress space can then be reformulated as:

S̃( f̄ ) = {τ ∈ Vτ | τ : P̂
⊥

= 0, div τ = 0,∀ x ∈ Ω; τ · n = f̄ ∀ x ∈ S f̄ } (10)

where P̂
⊥

is dependent on the kinematic data û.

The constitutively compatible stress space S
(
K̂ , û

)
can be found by minimizing the global

violation of the compatiblity condition:

σ̃ = arg min
τ ∈ Ŝ

(
f̄
)

∫
Ω

(
τ : P̂

⊥
)2

dΩ (11)

2.3.1. Decomposition of the statically admissible stress space

Let σp be a statically admissible (macroscopic) stress field (i.e. σp ∈ Ŝ) that conforms to
a chosen projection (i.e. uniform, up to linear, up to quadratic ...) of the boundary traction

4



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

over ∂Ω. Any statically admissible stress field σ that is admissible to the same projection of
boundary tractions can then be written:

∀σ ∈ Ŝ ∃σo ∈ So | σ = σp + σo (12)

where σo is an homogeneous (microscopic) stress field (i.e. with zero traction boundary condi-
tion) belonging to the space So defined as:

So = {τ ∈ Vτ | div τ = 0 ∀ x ∈ Ω, τ · n = 0 ∀ x ∈ ∂Ω} (13)

Defining a basis for Ŝ requires the construction of (1) a basis of particular stress fields σp
i

(exerting traction over the local subdomain boundary) and (2) a basis of homogeneous stress
fields σo

i
(tractionless over the local subdomain boundary). A convenient choice of basis used

here (detailed earlier [1]) can represent up to linearly varying tractions. Thus, any stress field in
Ŝ can be expanded in terms of a linear combination of these basis tensor fields

σ =

K∑
k=1

fkσ
p

k
+

N∑
i=1

diσ
o

i
(14)

di, fi are constant coefficients of homogeneous and particular basis tensor fields respectively.

2.3.2. Obtaining the stress and identifying the parameters

We can now solve for the stress. The objective function is written:

ω =

∫
Ω


 N∑

i=1

diσ
o

i
+

K∑
k=1

fkσ
p

k

 : P̂
⊥


2

dΩ (15)

The minimization of Eq. (15) leads to a non-square system for which we seek the eigenvectors
and eigenvalues through the pseudo-inverse. Ideally, only σ0 and σ1 are required to describe

the stress state in Ω. In general, the stress state can be written as σ̃ =

Q∑
q=0

κqσq where Q is the

total number of eigenvectors and the multiplicative factors κq are unknown.

Given the stress, the material parameters can then be identified as follows:

λ1 =

 Q∑
q=0

κqσq

 : ε
1

‖ε
1
‖2

and λ2 =

 Q∑
q=1

κqσq

 : ε
23

‖ε
23
‖2

(16)

5



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

3. Domain decomposition using the CCM approach

In the domain decomposition strategy, the monolithic CCM identification problem is solved
independently over each subdomain Ei. Here we describe the procedure to enforce the interface
compatibility conditions and determine κq

Ei
that link the stresses in the subdomains to obtain the

stress reconstruction over the entire domain.

The strategy is performed in three steps: (1) partitioning the domain into non-overlapping sub-
domains Ei, (2) solving the Dirichlet boundary condition identification problem over each sub-
domain, (3) using the families of stress fields σ̃

Ei
resulting from step (2) to solve for the macro-

scopic projections that ensure global equilibrium of the entire domain and perform identification
within the domain.

3.1. Partitioning the observed area into subdomains

We begin by partitioning the domain Ω into subdomains Ei such that Ω =
NE⋃
i=1

Ei. Within each

subdomain Ei we have part of the full-field observation (û) and no knowledge about the traction
boundary conditions (i.e. this is a Dirichlet-like problem). In addition, we define a set of
interfaces Γ which are either common boundaries, say ΓEE′ , between adjacent subdomains E
and E′ or part of the boundary of the domain ∂Ω. These external interfaces are regions of
either prescribed Dirichlet conditions (Γū) or of prescribed Neumann conditions (Γ f̄ ) such that
∪Γ f̄ = S f̄ and ∪Γū = S ū.

The stress solution to the problem over the domain Ω is built as the superposition of the solutions
(σ̃

Ei
) over each sub-domain such that σ̃ =

⋃
Ei ∈Ω

σ̃
Ei

. The stress fields (σ̃
Ei

) satisfy

• constitutive compatibility :

σ̃
Ei
∈ S̃Ei = SEi ∩ SEi

(
K̂ , û|Ei

)
S̃Ei ={τ ∈ Vτ | τ : P̂

⊥|Ei = 0 and div τ = 0 ∀ x ∈ Ei}
(17)

• interface compatibility:

σ̃
E
· nE = −σ̃

E′
· nE′ ∀x ∈ ΓEE′

σ̃
E
· nE = f̄ ∀x ∈ Γ f̄

(18)

with SEi ={τ ∈ Vτ | div τ = 0 ∀ x ∈ Ei} a statically admissible stress space, and SEi

(
K̂ , û|Ei

)
a constitutively compatible stress space of the local subdomain.

4. Large-scale problem

The domain decomposition approach gains its utility in cases where the amount of the kinematic
data to be processed is prohibitively large. A 10 mm ×10 mm domain with Young’s modulus
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distribution given in Fig. 2(a) was subjected to a linearly varying traction in the y direction (with
profile σ · n = (0.1y + 0.5) · n) that induced a tensile load in the x direction. Fig. 2(b) shows a
finer heterogeneity within the structure. A very fine mesh was used to obtain the displacement
field from a displacement based FE analysis. For the identification, the domain was divided into
20 × 20 equally sized subdomains with 31 × 31 displacement data points over a regular grid in
each subdomain.
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Figure 2. Reference problem with heterogeneous Young’s modulus map (in MPa) and linear traction in the x
direction (a). A zoom on the finest heterogeneity is shown (b). The Poisson’s ratio shares the same distribution
with lower and upper limits 0.3 and 0.4 respectively.

In Fig. 3 we see the stress fields reconstructed using the domain decomposition approach. In
Fig. 4 the reconstructed stress and the exact stress from FE analysis are given for a region
(containing 5 × 5 subdomains) encompassing the fine heterogeneity within the structure. Fig. 5
shows the Young’s modulus estimation resulting from the domain decomposition identification
approach. The high error localized at the bottom boundary at 4 ≤ x ≤ 6 is present because the
load path travels around this region.

5. Concluding Remarks

The domain decomposition CCM method consists of a local stress reconstruction stage over
the subdomain through the solving of a Dirichlet problem based on the kinematic data. Then,
global compatibility of the stress is achieved by choosing the resulting stress fields that satisfy
the global stress boundary conditions and best assure traction continuity over interior interfaces.
The domain decomposition approach was shown to capture variations in the stress fields due
to a small heterogeneity while also giving a good reconstruction of the stress fields on the
global scale. The stress reconstruction then allowed for local identification of the parameters
throughout the domain.
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a b c

Figure 3. Reconstructed stress fields (a) σx, (b) σy, (c) σxy (MPa).

a cb

d fe

Figure 4. Reconstructed (a) σx, (b) σy, (c) σxy and exact stress fields (d) σx, (e) σy, (f) σxy (MPa) over
1.4 ≤ x ≤ 4, 7 ≤ y ≤ 9.5.
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Figure 5. Identified Young’s modulus distribution (MPa).
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