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Abstract

This paper presents a new device for testing coitgposaterials in mode Il of fracture,
which lets to test in mode IIl quasi-pure, becatise is not practically mode II. This does
not happen with other devices used for this moddraafture which have an important
component of mode Il. Another characteristic isithprovement of the quality and facility of
the fitting of the specimen in the device becahseetare not screws and mechanical fixtures
which avoids preloads before the beginning of test.

1. Introduction

Nowadays there are several methods for testing osit@omaterials in mode 1l of fracture.
One of them is the Split Cantilever Beam (SCB) [1k3 this method the specimen is loaded
in one direction parallel to the delamination plabenaldson [1] used two aluminum blocks
adhered to the specimen trying to avoid torquesnduthe test. With this method were
obtained good results but irregular overloads wiedkced, this was the reason of the
modification of the method, named Simplified S@iantilever Beam (SSCB) [1]. In these
tests the mode Il was very important, approximasef0% of the energy release rate. In order
to decrease this percentage of mode Il, blocks witkery high stiffness were used in the
research of Hwang and Hu [2]. Robinson and Songhgt] a new idea for decreasing the
mode II. Sharif et al. [5] and Kortschot [6] destgha device for obtaining a mode Il
dominating, known as Modified Split Cantilever Be@SCB). Szekrényes [7] has carried
out an interesting study about the advantages msadvhntages of this test method.
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Figure 1. Schema of two test methods: Split Cantilever Beaoh Simplified Split Cantilever Beam
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Figure 2. Schema of the Modified Split Cantilever Beam spesi and method

Anti-Clastic Plate Bending (ACPB) [8] is a methad which a rectangular specimen with

chases in the middle line of it is subjected tavestt deformation. ACPB test can be carried
out applying two loads perpendicular to the speainmetwo opposite corners, or applying a

torque load in two opposite sides. The torque loadses in the specimen an anti-clastic
surface, this is, a surface with a double curvatiue with opposite sign (Gaussian curvature
negative). This method is used for obtaining freettoughness in mode Ill of composite

materials [9].
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Figure 3. ACPB specimen
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Another test method for mode Il is known as Edgack Torsion (ECT) [10]. It was
developed by Lee [11] and it has been consideredgaeat advance in the field of fracture in
mode 11l [12-16]. An important characteristic ofighest is that the Calibration Compliance
Method (CC) can be applied [7], although in thisttenethod the effect of friction is
negligible [17]. Ratcliffe [18] in a recent analyshowed some drawbacks: dependence of the
energy release rate from the crack length, lossmedrity in the curves load-displacement and
damages in the specimen previous to the delamméditure. Pennas et al. [19] showed that
the energy release rate in mode Il increased thighcrack growth, according with the results
of Ratcliffe [16]. Recently Moura et al. [20] explad that the increment of the resistance to
the crack propagation is caused because this dmteadwvance uniformly between the load
points and the damage area.
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Figure 4. ECT method

More recently, de Morais and Pereira [21] publisiteel method Four-Point Bending Plate
(4PBP) in order to characterize the fracture of gosite materials in mode Ill. This test is
simpler than ECT test, but the energy releasemai& be obtained using finite elements.

2. Experimental Procedure
2.1. Materiales and specimens

The material employed in this research program masufactured by Hexcel Composites.
The material is composed of a 8552 epoxy resinrpggpmodified to increase its toughness,
reinforced with AS4 unidirectional carbon fibre femercial name AS4/8552 RC34 AW196).
The cured panel was obtained by cutting prepregniai®, sequentially plied and cured in
autoclave, with a volume fraction of 60%. The cgafation of the laminates is symmetric
[0°16/s employing a 20 mm thick Tygavac RF-260-R at thdptane as insert to form an

initiation site for delamination.

The dimensions of the specimen used in the presedy were: length = 200mm, width = 10
mm and thickness = 6mm.

2.2. Test procedure
A new device has been designed in order to tesposite materials in mode Ill. Figure 5

shows two views of the device with the specimersoAhe cylinder which applies the load
can be observed in the first image.
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Figura 5. Test device and specimen

Figure 6 shows the axis for application of theitoral loading. The test equipment employed
was a dynamic biaxial servohydraulic Walter+batibtgs machine with 260 Nm and +45°.

The tests have been carried out to an angular itelo€ 0.1°s. Figure 7 shows the test
equipment and the testing machine.

Figure 6. Device, specimen and loads.
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Figure7. Test device and testing machine.
3. Experimental results

Specimens with the point of application of loadwo different distances from the insert have
been tested. The selected distances were 1 andr26 he aim was to obtain the quantity of
modes |, Il and IIl in each case. An Optical 3D @efation Analysis equipment with the
commercial name of ARAMIS and manufactured by GOA8 been used for measuring the
displacements of different selected points durinhg test (figure 8). Figure 9 shows the
specimen with the insert to 26 mm of the loadinghpand the displacements in an instant
close to the specimen breakage. Also three diftgpemts where the displacements were
measured have been situated in the figure. Theegaheasured can be seen in figure 10. The
displacements in the directions of axes X and Y mgligible in comparison with the
displacement in Z-axis. The displacements in thmeetlpoints are practically the same being
this a proof that there is no twist in the specimen

Figure 8. Test using optical displacement analysis
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Figure 9. Specimen with insert and load applied to 26 mmmfib Displacements previous to the failure of the
specimen
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Y-axis (Mode 1) X-axis (Mode Il) Z-axis (Mode Ill)

Figure 10. Displacements in the directions of three axes

Figure 11 shows the specimen with the insert to h of the loading point and the
displacements in an instant close to the specimeakhge. Also three different points where
the displacements were measured have been situated figure. The values measured can
be seen in figure 12. The displacements in thectiines of axes X and Y are negligible in
comparison with the displacement in Z-axes. Theldeements in the three points are
practically the same being this a proof that themo twist in the specimen.
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Figure 11. Specimen with insert and load applied to 26 mmmfib Displacements previous to the failure of the
specimen

Figure 12. Displacements in the directions of three axes

Figure 13 show the comparison between the displantsmin the direction of the X-axis
(mode II) y of the Z-axis (mode Ill) in both cas#ss is, applying the load to 26 mm and to 1
mm of the insert. In this last case the mode Ifir&ctically pure.
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Figure 13. Displacements in X-axis and Z-axis when the load applied to 26 and 1 mm of the insert.

4. Conclusions

The new device designed allows obtaining practicallmode IIl pure in the point of the
crack. Also if the load is applied close to thec&réhe mode Il obtained is more pure. The
percentages of mode Il with this device are high®wn those obtained with previous
methods.
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