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Abstract  
Carbon Fiber Reinforced Polymer (CFRP) wire ropes with independent wire rope core 
(IWRC) present outstanding performance in terms of specific stiffness and strength, and 
fatigue behavior. Particularly in civil engineering, CFRP single strands (1x7 configuration), 
spiral cables (1x19 configuration) and wire ropes (6x7 stranded configuration) have been 
used in many structural applications. In this study, a CFRP 6x7 wire rope with IWRC has 
been developed and tested for tensile behavior. Two mathematical models were studied: the 
first was based on the analytical theory of wire rope for isotropic materials and the second 
was based on a numerical approach using finite element analysis. Application of the isotropic 
analytical model for composite cables yielded prediction deviations close to 5% as compared 
to the 3D finite element numerical model, with contact hypothesis and material orthotropic 
orientation, for a pure tensile load. 

 
 

1. Introduction 
 

Carbon Fiber Reinforced Polymer (CFRP) cables present outstanding performance in terms of 
specific stiffness and strength, and fatigue [1]. Also, they can be natural candidates for harsh 
environments, such as offshore applications, due to their excellent corrosion-resistant 
properties. The introduction of CFRP instead of steel for cables has been proposed by Meier 
et al. [2]. From the lifetime point of view, studies indicated superior results for carbon fiber 
composites compared to aramid or glass, and the potential of carbon fibers is considered 
promising [3]. 
 
Many studies related to steel cables have been performed to evaluate their mechanical 
properties. Particularly for civil engineering, CFRP cables and profiles have been used for 
many structural applications. For instance, reinforced concrete bridge piers, which are 
subjected to corrosion from salty breezes, were strengthened by CFRP cables instead of 
reinforcing steel bars. Figure 1 shows cable strands into a cable stay bridge in Maine (USA) 
started in July 2003 when the Maine Department of Transportation awarded a contract for 
renovation of the 75-year old Waldo-Hancock (steel suspension) Bridge [4]. Studies on CFRP 
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cables, however, are scarce even though they are essential. Moreover, the behavior of such 
cables is not fully understood. Issues like the role of the orthotropic properties inherent to the 
material or the effect of the contact loads between the wires still need clarification. 
 

 
Figure 1. CFRP Cable strands into a cable stay bridge in Maine (USA) [4]. 

 
 
On the contrary, the behavior of metallic wire ropes has been thoroughly studied [5-7]. 
Analytical models take into account the geometry of the component as well as the hypothesis 
of contact between the wires. Yet, these models were developed for isotropic materials and 
there are no such models available for composites. 
 
In this study, a commercial CFRP cable previously tested for tensile behavior was selected to 
verify the accuracy of two mathematical models. The first model was based on the analytical 
theory of wire rope for isotropic materials presented by Costello [6], and the second one was 
based on finite element analysis. 
 
2. Analytical Model 

 
The analytical model used in this study is thoroughly explained in Costello [6]. The 1×7 cable 
is the sub-element of more complex wire ropes, such as the 6×7 cable. This model is then 
based in the use of kinematics of a thin wire to get the equilibrium equations (Equations 1-6): 
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where � and �’ are the components of the shearing force on a wire cross section in the x and y 
directions, respectively; � is the twist per unit length; 	 is the axial tension in the wire; �, �, � 
are the components of the external line load per unit length of the centerline of the wire in the 
x, y and z directions, respectively; 
 and 
′ are the components of curvature in the x and y 
directions, respectively; � and �′ are the components of the bending moment on a wire cross-
section in the x and y directions, respectively; � is the twisting moment in the wire; �, �′ and � are the components of the external moment per unit length of the centerline in the x, y and z 
directions, respectively. Figure 2 shows the loads acting on an helical wire of a 1×7 strand. 
 

 
Figure 2. Loads acting on a helical wire [6]. 

 
 
The final equations for a static response for a 1×7 strand [6] are described by Equations 16-
26, where � is the elastic modulus and � is the Poisson's ratio of the wire for an isotropic 
material. 
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Figure 3 shows the cross section of a 6×7 cable. For the solid wire strands in strand 1, the 
twisting moment and the axial force in the strands are determined from the properties of a 
straight solid wire with an angle of twist per unit length of ∆τ�, that is, � = ����A∆τ�/4(1 + ν) 

and 	 = �����ξ�. Thus, the axial strain and the angle of twist per unit length will be used to 
determine the axial force and axial twisting moment in the curved strand. Let the helix angle 
of strand 2, shown in Figure 3, be $�∗. As the rope is loaded, this helix angle assumes a new 
value $D�∗. The angle of twist per unit length for strand 2 becomes 

 

∆τ�∗ =  sen $D�∗ cos $D�∗%̅�∗
−  sen $�∗ cos $�∗%�∗

 (18) 

in which: 

%�∗ =  �> +  2�� + 2�A +  �� (19) 

and where, due to Poisson’s ratio effect, 

%̅�∗ =  %�∗ − ν ( �>ξ> +  2��ξ� + 2�AξA +  ��ξ�) (20) 

in which ξ>, ξ�, ξ� and  ξA are the axial wire strains in wires 1, 2, 3, 4, respectively.  

 
Guided by the analyses of strand 1 the following equations can be written: 

 

ξ> =  ξ� + ∆ΑA∗tan Α�∗
   (21) 

ξ� =  ξA + ∆ΑAtan ΑA (22) 

R�∗ τ = ξ�tan Α�∗
−  ∆Α�∗ + ν
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 (23) 
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(24) 
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where τ  is the twist per unit length of the rope and ∆τ�∗   is the angle of twist per unit length of 
strand 2. 

 
 

 

Figure 3. Cross section of a 6×7 cable [6]. 
 

The final equations for the analytical model for the 6×7 cable are given by Equations (25-30). 
 

G′�∗ =  A�∗ ∆κ�∗ =  A�∗ Ocos² αR�∗r�∗
−  cos² α�∗r�∗

T (25) 

N′�∗ =  H�∗
cos² α�∗r�∗

−  G′�∗
sen α�∗  cos α�∗r�∗

 (26) 

F�∗ =  6(T�∗ sen α�∗ +  N��∗  cos α�∗ ) (27) 

M>�∗ =  6(H�∗  sen α�∗ + G��∗  cos α�∗ + T�∗r�∗  cos α�∗ − N′�∗ r�∗  sen α�∗ ) (28) 

F =  F>∗ +  F�∗ (29) 

M[ =  M[>∗ +  M[�∗  (30) 

In the current study, the 6×7 strand is in fact a composite material. Since the cable 
performance under tensile loading will be dominated by the axial properties, a simplified 
approach was adopted by merely using the equivalent axial composite modulus (�>) and 
Poisson’s ratio (�>�) instead of the corresponding isotropic properties (� and �, respectively). 

 
3. Numerical Model 

 
The numerical model was developed within the commercial finite element platform 
AbaqusTM. The 6×7 strand was created with wire diameter of 3 mm, cable nominal diameter 
of 27 mm, 100 mm length and pitch of 1000 mm and double pitch of 3000 mm with the 
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regular lay orientation (Figure 4). The material properties used were those shown in Table 1. 
Each wire in the strand has its material orientation fiber axis set along the helix length, as seen 
in Figure 4b, and in a single spring in Figure 4a. The mesh is comprised of 8-node tetrahedral 
elements type C3D10, with a total of 15,777 nodes and 53,087 elements (Figure 5). 
 

 E1 = 147.6 GPa G12 = 2.87 GPa ν12 = 0.28 

 E2 = 8.6 GPa G13 = 2.87 GPa ν13 = 0.28 

 E3 = 8.61 GPa G23 = 3.60 GPa ν23 = 0.02 

Table 1. Elastic constants for CFRP used in the models. 
 

 

Figure 4. Description of material orientation (fiber axis) along the helix length: (a) for a single wire and (b) for 
the 6×7 cable. 

 
Contact hypothesis was assumed between the wires, node-to-surface discretization method 
was applied with small sliding allowed on a total of 96 contact pairs. The contact properties 
have been set with a tangential behavior, with a friction coefficient of 0.6, and with normal 
behavior with pressure-overclosure set as “hard” contact. One of the strand ends was built-in, 
not allowing deflection or rotation in any direction. On the other end, rotation around the z 
axis was allowed in the longitudinal direction of the strand (fixed-end, � = 0), and the axial 
force was applied at this same end. 
 

(a) 

(b) 
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Figure 5. 3D numerical model of the CFRP cable: Mesh with 8-node tetrahedral elements. 
 

4. Results 
 
Tensile predictions of analytical and numerical models results for the CFRP 6×7 cable is 

presented in Figure 6. Table 2 shows the tensile stiffness and failure load for comparison. It 
can be seen that the analytical model overestimated the numerical model stiffness by 4.50% 
and failure load by 4.46%. This indicates that this model, in spite of be originally developed 
for isotropic cables, showed small errors compared to the numerical model developed for 
orthotropic cables for a pure tensile load. The mere replacement of the elastic properties did 
generate a reliable result, presenting errors inferior to 5%. Furthermore, these results did not 
need for hard computational processing, due to the low complexity of the equations involved 
and the simplified hypothesis of no contact used. Simulations for the 3D numerical model 
were performed in a 4-core i5 processor with 6 MB RAM memory, taking about 180 min to 
run. This model has a higher complexity compared to the analytical model, since it includes 
3D geometry, contact hypothesis and correct orthotropic material characterization and 
orientation, but demands greater computational effort. 

 

 
Figure 6. Load vs. Strain curves for the CFRP 6×7 cable for the numerical model and analytical model. 
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Model Stiffness 
(kN/m2)  

Difference 
(%) 

Failure load 
(kN) 

Difference 
(%) 

Analytical Model 510 4.50 970.28 4.46 

Numerical Model 488 - 927.00 - 

Table 2. Tensile stiffness and failure load for the 6×7 CFRP cable. 
 

5. Conclusions 
 
CFRP cables have a great potential to be applied in different engineering fields for high 

performance applications. No analytical model dedicated for composite cables could be found 
in the literature. Use of the isotropic model considering the equivalent axial composite 
modulus (E1) Poisson’s ratio (ν12) instead of the corresponding isotropic properties (E and ν, 
respectively), generated differences smaller than 5% in comparison with the numerical model. 
However, the 3D numerical model is more complex considering contact hypothesis and 
material orthotropic orientation. 
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