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Abstract 

An approximate solution for the stresses and displacements according to the theory of 

bending with influence of shear is given. It is assumed that the normal stresses in the 

transverse direction are small compared to the normal stresses in the longitudinal direction 

so that can be ignored in the stress-strain relations. The solution for the stresses and 

displacements are given in the analytic form. The unidirectional orthotropic beams with 

double symmetrical cross-section are considered. The results are compared to the finite 

element method in several examples. 

 

 

1. Introduction 

 

The Euler-Bernoulli beam theory as well as the Vlasov’s thin-walled beam theory do not take 

into account shear deformation due to shear forces [1]. The shear deformation effect as well 

the Poison’s effect can be considered by using the methods of theory of elasticity [2,3], but in 

that case the problem is no longer one-dimensional. Approximate methods which take into 

account shear effect are developed [4,5,6]. The concept of shear factors first introduced by 

Timoshenko was used for these analysis [7,8]. Recent approaches to the problem are based on 

geometric assumptions [9-17] or shear energy relations [6]. Comparisons by numerical 

examples are given in [18-20]. 

 

The solution for the stresses and displacement according to the theory of bending with the 

shear influence [8,14,15,16,17,21] will be applied for orthotropic thin-walled beams. 

Pultruded beams are essentially orthotropic, with material principal directions parallel and 

transversal to the beam longitudinal axis. In that case, the beams can be considered as 

unidirectional orthotropic beams [22]. Beams with cross-sections with two axes of symmetry 

are considered. Poisson’s effect is ignored, as well as the warping effect, defined by the “non-

uniform warping bending theory” [20]. 

 

2. Strains and displacements 

 

The displacement of a point S( , )x s  at the middle line in the case of bending of thin-walled 

beams of open sections with respect to the xz-axis of symmetry can be expressed as (Fig. 1) 
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where ( )w w x  is the displacement in the z-direction, i.e. the displacement of the cross-

section middle line as a rigid line in the plane of symmetry, ( )z z s  is the rectangular 

coordinate, ( )u u x  is the displacement of the cross-section middle line as a rigid line in the 

x-direction, ( , )x x x s    is the shear strain in the beam middle surface, s is the curvilinear 

coordinate of the middle line,   is the tangential axis on the curvilinear coordinate s; Oxyz is 

the orthogonal coordinate system, where the y and z-axis are the axes of symmetry; ( )x   

is the angular displacement of the middle line as rigid line with respect to the y-axis, 

orthogonal to the z-axis. 

 

 

Figure 1. Portion of the cross-section middle line 

 

The displacements can be expressed as 

 
b aw w w  ,  

au u   (2) 

where where ( )b bw w x  is the displacement of the cross-sections as plane sections in the z-

direction, as in the case of the ordinary theory of bending, ( )a aw w x  is the additional 

displacement due to shear in the z-direction, ( )a au u x  is the additional displacement due to 

shear in the x-direction. The angular displacements can be expressed as 

 b a    , d db bw x   , d da aw x     (3) 

Thus, the strain in the longitudinal direction can be expressed as 
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3. Stresses and displacements 

 

Hooke’s law for the plane stress condition and unidirectional lamina can be expressed as 

 1 1 2 12 2
1

21 121

E E
, 2 2 2 12 1
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21 121

E E
, 12 1

21 2

E

E
, 12 12 12G   (5) 

where 1  and 2  are the normal stresses in  the major (1) and minor (2) directions, 

respectively; 1  and 2  are the normal strains; 1E and 2E  are the moduli of elasticity; 12 is 

the major Poisson’s ratio; 12  is the shear stress and 12G is the shear modulus. From Eqs (5) 

 1 1 1E f ,  
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2
12

1

1f .  (6) 
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The function f can be calculated for the flange of simply supported thin-walled beam with I-

section subjected to bending by uniform loads per unit length, for the maximal normal 

stresses at the beam midspan at the junction of the beam web and the flange [16], using 
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for the orthotropic and isotropic material, respectively; where l is the beam length and b the 

flange breadth. For 1E  53.78 GPa, 12G 8.96 GPa, 12 0.25 (glass/epoxy [23]), and 

  0.3 (steel), the results are given in Tab. 1. 

 

l/b σ2/ σ1 (σ2/ σ1)iso.  f fiso. 

3 0.0774 0.0940 1.0197 1.0238 

5 0.0346 0.0375 1.0087 1.0105 

Table 1. The function f , given by (7) and (8), for orthotropic and isotropic material, respectively 

 

The function f, as it is shown, is very closed to one, even for extremely low l b ratios. Thus,  

the Hooke’s law for unidirectional laminas can be expressed as 

 x x xE , x xG ,  (8) 

where 1( , )x x x s    , 1xE E , 12( , )x x x s      and 12G G . From Eqs. (4) and (8) 
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From the equilibrium of a differential portion of the beam wall 
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where ( )t t s  is the wall thickness and M is the starting point of the curvilinear coordinate s. 

If .x x const   , referring to Eqs. (9) and (10)  
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where ( )y yS S s  is the moment of the cut-of portion of area with respect to the y-axis, 

( )A A s  is the cut-of portion of portion  of the beam wall  area with respect to y-axis, s is 

the curvilinear coordinate of the cut-of portion of the beam wall area, from the free edge, i.e. 

where 0x  . 

 

4. Equilibrium equations 

 

For a portion of the beam wall 
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where ( )z zq q x  are the forces per unit length acting in the beam plane of symmetry. 

Referring to Eqs.(9) and (11) 
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where, due to symmetry, 0yS  . Thus 
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5. Internal forces and stresses 

 

Integration of the shear stresses over the cross-sections gives 

 s in dx z
A

A Q     (17) 

where ( )z zQ Q x  is the shear force with respect to the z-axis. Substitution of Eq. (12) gives 
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Referring to Eqs. (16) 

 d dz zQ x q  ,  (19) 

Thus, by substituting Eq.(12) into (18) 
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Integration of the normal stresses over the cross-sections gives 

 d 0x
A

A  ,   dy x
A

M z A  ,  (21) 

where ( )y yM M x  is the bending moment with respect to the y-axis. By substituting Eq.(9) 

into (21) 
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where 
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 . Thus, 0zN   and referring to Eqs. (16), (18) and (22) 
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The normal stress given by Eq. (9), according to Eqs. (20) and second expression of (25), 

finally can be expressed as 
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The component z

yM  given by Eq. (24) can also be written as 
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where z  is the shear factor with respect to the w -displacements. Then, normal stress can be 

expressed as 
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6. Differential equations with separated displacements 

 

Eqs. (22), according to Eqs. (27), can be expressed as 

 
d

0
d

u

x
 ,    

2

2

d

d

y z
z

x y

Mw
q

x E I GA


   .  (29) 

According to Eqs. (2) 
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Integrating, taking into account Eqs. (3) and (19) 
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   .  (31) 

Integration constants are ignored. It is assumed that the angular displacements a  do not 

depend on the boundary conditions. Then 
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Integrating the second equation of Eqs. (31) it is obtained that 
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where Cw is integration constant with respect to the w-displacements. 

 

7. Boundary conditions 

 

For starting section A: 

 0aw  ,  
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M
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  ,  (34) 

where AyM is the bending moment at Ax x . For simply supported beams, for hinged 

sections A and B it may be written 
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For the clamped beams 
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8. Shear factors 

 

The normal stress at junction of the web and the flange, according to Eq. (30), can be 

expressed as  
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I
    ,  (37) 

where for beams loaded by uniformly distributed forces per unit length for the beam midspan 
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 (38) 

for simply supported and clamped beams, respectively. The total displacement, according to 

Eq. (36), can be expressed as 

 
bw w ,  (39) 

where for beams loaded by uniformly distributed forces per unit length for the beam midspan 
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for simply supported beams and clamped beams, respectively. 

 

For simple double symmetrical cross-sections (Fig.2) 
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where 1 1 0 0 0 1, , ,A bt A ht A A b h     . 
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Figure 2. Simple double symmetrical cross-sections 

 

9. Illustrative examples 

 

The factors   and  , obtained analitically using Eqs. (38) and (40), for simply supported and 

clamped beams are compared with numerically obtained results by applying the finite element 

method using ADINA software. The results at the beam midspan are presented in Tab. 2 and 

Tab. 3. The 9-noded shell elements are used for the FEM analysis of 3D geometry model. The 

cross-section properties are defined according to Fig. 2: b = h = 100 mm, t0 = t1 = 5 mm. The 

distributed line load of 1 kN/m is applied to act at neutral axis of the cross-section. The 

material models are analysed with following properties: for orthotropic material 

(Ex = 53.78 GPa, G = 8.96 GPa) and for isotropic material (E = 210 GPa,  0.3). The 

analyses are performed for two different beam lengths (l/b = 3 and l/b = 5). In the FEM 

analysis, only one half of the model is analysed using appropriate boundary conditions at the 

beam midspan and at the starting sections (simple supported and clamped boundary 

conditions). 

 

 Orthotropic Isotropic 

l/b 
Simply supported Clamped Simply supported Clamped 

(38) FEM (38) FEM (38)  FEM (38) FEM 

3 1.394 1.384 2.181 2.003 1.171 1.176 1.512 1.469 

5 1.142 1.142 1.425 1.407 1.061 1.063 1.184 1.168 

Table 2. The factors , according to (38), for orthotropic and isotropic material, respectively 

 

 Orthotropic Isotropic 

l/b 
Simply supported Clamped Simply supported Clamped 

(40)  FEM (40) FEM (40)  FEM (40) FEM 
3 5.207 5.312 22.036 21.710 2.822 2.899 10.112 10.068 
5 2.515 2.535 8.573 8.449 1.656 1.676 4.280 4.256 

Table 3. The factors , according to (40), for orthotropic and isotropic material, respectively 

 

10. Conclusion 

 

An analytical solution for bending of thin-walled beams under the influence of shear for 

double symmetrical cross-sections is given.  The shear factors are given in the parametric 

form in order to compare the shear influence on the beam bending both for orthotropic and 

isotropic materials. It is shown that the shear influence in the case of unidirectional 

orthotropic beams is significant, and must be taken into account even in the case of higher 

beam aspect ratios. Several examples are analyzed in comparison with the finite element 

method. Excellent agreements of the results are obtained. 
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