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Abstract  
The primary aim in this study is to capture the in-situ failure mechanisms in the transverse 
direction in a [ ]

sn 22 90/0  E-glass/Epoxy laminate. A representative volume element (RVE) of 
the composite microstructure is simulated by using a finite element analysis to capture the 
main damage mechanism including matrix cracking, fiber-matrix interface debonding and 
crack propagation of transverse cracks and the consequence crack density. Finally, the 
relation between the thermomechanical properties and the crack density is studied. The 
numerical results from the model confirm the insitu strength effect due to the reduction of the 
thickness of the ply oriented at 90º. 

 
 

1. Introduction  
 
Fiber-reinforced polymers (FRP) are nowadays extensively used in applications where 
outstanding mechanical properties are necessary in combination with significant weight 
reductions. FRP present several different physical failure mechanisms and the dominant ones 
depend on the loading conditions. Fracture due to tensile stresses parallel to the fibers is 
controlled by the tensile fracture of the fibers, while compressive stresses along the fibers lead 
to fracture by fiber kinking in compression. Tensile fracture perpendicular to the fibers is 
brittle and is controlled by the fracture of the polymer matrix and of the fiber-matrix interface, 
while fracture caused by compressive stresses perpendicular to the fibers or by shear is 
accompanied by large deformations as a result of the non-linear response of the matrix when 
subjected to compression and/or shear. Finally, as composite laminates are made up by 
stacking lamina (or plies) with different fiber orientation, interply delamination is another 
typical failure mechanism in FRP due to the thermo-elastic mismatch between adjacent plies. 
Despite all existing information and current knowledge about these materials, the accurate 
prediction of the failure stress of composite materials and structures has been an elusive 
problem because of the complexity of failure micromechanisms involved.  

 
2. Computational simulation of transverse cracking 

 
Simulations were performed with the Abaqus/Standard finite element package under 
generalized plain strain conditions in the framework of finite deformations using the initial 
unstressed state as the reference. 
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2.1. Geometrical model and finite element discretization 

 
The representative volume element (RVE) used in the analysis corresponds to a cross-ply 
[ ]

sn 22 90/0  laminate (n=1,2,4,8) subjected to tensile loads along the 0º direction (Figure 1.a). 
The RVE was rectangular in shape with length L=10mm and thickness t=2(n/2+2)t0 being 
t0=68.75μm the thickness of a single lamina. The RVE was long enough to adequately capture 
the cracking pattern and accurately compute the crack density for a given applied 
deformation. The external laminae with the fibers along the 0º direction were assumed to be 
homogeneous while the central region of thickness t0 was discretized with a dispersion of 
monosized circular E-glass fibers of radius R=15 μm embedded in the polymer matrix.  

 
The fibers were dispersed using the random sequential adsorption algorithm developed by 
Segurado and LLorca [1], for a given volume fraction of reinforcement. The dispersion of 
fibers was enforced to maintain the periodicity condition along the loading axis, hence the 
fibers intersecting the loading edges at x=0 and x=L were cut and translated to the opposite 
edge of the model. The fiber distribution was generated randomly and sequentially. Each of 
the fiber position was accepted according to practical requirements to avoid distortions during 
finite element discretization. It should be mentioned that those fibers intersecting the internal 
edges at z=±nt0 were removed from the model to represent the typical rich matrix region 
between adjacent plies with different angle directions (Figure 3.b). The model has a fiber 
volume fraction of 65%. 

 

Figure 1. a) RVE of material composite laminate with stacking sequence [02,90n/2]s , b) RVE with t=137.5μm 
and 250 fibers, c) Fiber and matrix mesh detail, d) cohesive elements detail (COH2D4).   

 
2.2 Boundary conditions 

 
Periodic boundary conditions were applied to the edges of the RVE to maintain the continuity 
between adjacent RVE's which should deform as jigsaw puzzles. The periodic boundary 
conditions can be expressed by constraint relations between the displacement vector ),( zxur  
of those nodes belonging to the opposite edges. Mathematically, this condition is given by 
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wherein )0,( xx δδ =
r  stands for the imposed displacement vector in the loading direction and 

),0( xz δδ =
r  is computed from the condition that the average stresses in the through-the-

thickness direction should be zero, the plane stress condition in the x-y plane of the laminate 
is given by 20

0
tzalongdxt

L
==∫

rr .  

The strain applied to the laminate was computed from the imposed displacement xδ  along the 
x -direction and was given by Lxδε = . The average stress acting on the loading edges xN  
was computed with the conjugate to the applied displacement reaction force and the current 
cross section of the laminate. Residual stresses develop in the composites upon cooling at 
ambient temperature after curing was taken into account in the micromechanical model by 
simulating the composite behavior in two steps. In the first step, the RVE was subjected to a 
homogeneous temperature change of CT º100=Δ  from the stress-free temperature down to 
ambient temperature (curing to room temperature drop).  
 
2.3 Mechanical behavior of the constituent materials 
 
The material behavior used in this study was previously reported by Canal et al [2,3] and 
corresponds to an E-glass/MTM 57 epoxy resin manufactured by Advanced Composites 
Group (ACG). The properties of the fibers, matrix and fibre/matrix interfaces were 
determined experimentally and were used as inputs in previous computational 
micromechanical models subjected to uniaxial compressive stress states [2], as well as in 
simulations of fracture induced by the presence of a notch [3]. During tensile splitting, 
fiber/matrix decohesion took place prior the severe plastic deformation of the matrix 
ligaments between neighboring fibers. This initial cracking mechanism was followed by 
subsequent ductile tearing of the matrix material. The simulation scheme was able to capture 
adequately the deformation and damage mechanisms observed at the microscale and also the 
global stress-strain response.  

 
2.3.1. Matrix properties 

 
In this work, the tension-compression directional behavior of the matrix was simulated by 
means of the damage-plasticity model proposed by Lee and Fenves [5] based on a previous 
model developed by Lubliner [6]. In this model, two different damage variables are used to 
account for matrix damage in tension and compression, m

tD  and m
cD  respectively. The model 

follows the traditional assumption of additive decomposition of the elastic and plastic strains 
tensors as ple εεε += . The stress-strain relation is  

 
 ( ) ( ) ( )σεεσ mplm DCD −=−−= 1:1   (2) 

 
wherein σ  is the current stress tensor, mD  is the matrix damage variable (depending on the 
tensile and compressive damage variables) and C  is the initial or undamaged elastic isotropic 
stiffness tensor that is computed with the respective matrix elastic modulus and Poisson ratio 
of GPaEm 5.3=  and 35.0=mν . The thermal expansion coefficient of the matrix was set to 

161020 −−= Kxmα . σ  stands for the effective stress which is computed assuming undamaged 
matrix ( )0=mD . The evolution of the damage variable mD  is governed by a set of two 
hardening variables (equivalent plastic strains for the tensile and compressive modes, namely 

[ ]pl
c

pl
t

pl εεε ~,~~ = ) and the effective stress tensor σ . The yield function of the model, 
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( ) 0~, ≤plF εσ , accounts for the different evolution of the matrix behavior under tension and 
compression by means of the expression 

 

( ) ( )[ ] ( ) 0ˆ~3
1

1~, max21 ≤−++
−

= pl
c

plpl JIF εσσεβα
α

εσ   (3) 

 
wherein ⋅  denotes the Macaulay brackets, 1I  and 2J  stands respectively for the first total 
and second deviatoric invariants of the effective stress tensor and maxσ̂  is the maximum 
principal effective stress (first eigenvalue of the effective stress tensor). The function plε~  
depends on the tensile and compressive strength of the matrix, as follows 

 

 ( ) ( )
( ) ( ) ( )αα
εσ
εσεβ +−−= 11pl

t

pl
cpl   (4) 

 
wherein α  is the pressure sensitivity parameter determined as 0000 2 cbcb σσσσα −−= with 

0bσ  and 0cσ  being the biaxial and uniaxial compressive strength of the matrix. Finally, the 
matrix tensile and compressive damage variables are assumed to be determined by the plastic 
equivalent strains in tension and compression ( )pl

t
m
t

m
t DD ε=  and ( )pl

c
m
c

m
c DD ε~=  and the 

degraded response of the matrix material obtained from the equivalent matrix damage 
variable as ( )( )m

c
m
t

m DDD −−−= 111 . 
 

In tension, damage occurs when the matrix stress reaches the tensile strength MPam
t 75=σ  

and the softening region is governed by a matrix fracture energy of 2100 mJGm
f = . On the 

other hand, damage is suppressed in the compressive region, and plastic yielding without 
hardening occurs at a compressive strength of MPam

c 105=σ . 
 
2.3.2. Fiber/matrix interface properties 
 
Fiber/matrix interface decohesion was simulated using the cohesive crack model. 
Isoparametric four-noded cohesive elements (COH2D4 in Abaqus/Standard) with thickness 

mμ310−  were inserted at the fibers/matrix interfaces. The mechanical behavior of the interface 
can be expressed in terms of a traction-separation law. In the absence of damage, the interface 
elements behave linearly and elastically with an initial stiffness given by iK . The traction 
vector in this case is 

 
 sisnin KtandKt δδ ==   (5) 

 
wherein nt  and tt , are the normal and tangential components of the traction vector and nδ  
and tδ , the respective conjugate displacement jumps at the interface. The elastic stiffness of 
the interface was set to mMPaxKi μ7105=  to ensure continuity of the displacement and 
stress fields in the absence of damage. The onset of damage occurs when the traction vector 
acting on the interface reaches the interface strength and this is dictated by the interactive 
quadratic stress criterion which reads as 
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with N  and S  the normal and shear strength of the interface. After the onset of damage, the 
stress transmitted by the cohesive crack is reduced according to the damage parameter iD  
which evolves from zero in the absence of damage to one at which point the physical 
interaction across the crack disappears and the crack propagates. In such regime, the normal 
and tangential components of the traction vector acting on the interface are determined as 
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The evolution of the damage variable iD  is controlled by the norm displacement jump across 

the interface 22
tn δδδ +=  according to ( ) ( )0max0max δδδδδδ −−= ffd . 

 
where 0δ  and fδ  stand, respectively for the displacement norm at the onset ( 0=iD ) and 
propagation ( 1=iD ) of cracking. The symbol maxδ  is the maximum displacement norm 
attained during the loading history at the integration point of the element. Crack propagation 
occurs when the energy release rate equals the interface fracture toughness cG  (area under the 
traction-displacement cohesive curve). The properties were set to MPaN 50= , MPaS 75=  
and 2100 mJGc =  as in [2]. 

 
2.3.3. Fiber and 0º layer properties 

 
E-glass fibers were treated as isotropic thermo-elastic solids in the whole deformation range 
with Young's modulus GPaE f 74= , Poisson ratio 2.0=fν  and thermal expansion coefficient 

16105 −−= Kxfα . On the other hand, the constitutive behavior of the layers with the fibers 
aligned with the loading axis direction was homogenized using the Mori-Tanaka method from 
the thermo-mechanical properties of the fibers and matrix considering a reinforcement volume 
fraction of 65%. The lamina elastic constants obtained are GPaE 7.451 = , GPaE 5.142 = , 

26.012 =ν  and GPaG 3.412 =  and the thermal expansion coefficients 622.61 −= eα  and 
69.282 −= eα . 

 
3. Simulation results 

 
Different models were generated using the Python-to-Abaqus scripting, leading to 
homogeneous fiber distributions corresponding to cross-ply laminates with increasing relative 
thickness between 90º and the 0º supporting layers. The stacking sequence is in figure 2(a). 
Models with a maximum element number of three million of elements were run in a AMD 
cluster with 24 processor leading to maximum computing times of the order of 48 hours.  

 
3.1. Strain to first microcrack 

 
The defined RVE was subjected to two consecutive steps: an initial temperature drop of 

CT º100=Δ  and the mechanical axial in-plane straining. The first stages of the simulation 
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progressed in an elastic manner. Stress and strain distribution in the fibers and matrix are 
clearly non-homogeneous and the fiber-fiber variations are controlled by the spatial 
distribution of the fibers in the RVE. Initially, during the application of the temperature drop, 
residual stresses in tension develop in the matrix being the magnitude not enough to cause any 
damage during the cooling down process. This residual stress distribution modifies the onset 
for matrix cracking formation in the subsequent steps. It is interesting to note that the source 
of residual stresses at the micro scale is a combination of stresses generated due to the 
thermoelastic mismatch between fiber and matrix as well as the effects of the different ply 
orientations in the laminate. 

 

  (a)   (b) 

 (c) 

Figure 2. (a) Sections of the RVE of [02,90n/2]s laminates used in the simulation, (b) Snap-shots of the fist ply 
cracks occurring in the [02,90n/2]s laminate, (c) Cracking pattern evolution with the applied macroscopic strain in 
the [02,902]s  laminate.  

 
During the following stages of the thermo-elastic loading, damage occurs at the fiber matrix 
interface producing decohesion at the fiber poles of some fibers with respect to the x  loading 
axis of the RVE. It should be mentioned that these interface cracks are naturally generated 
with the present approach and are directly triggered by the internal stresses at the fiber/matrix 
scale (maximum values) being the corresponding peaks controlled by the spatial distribution 
of the fibers within the RVE. At some point of the deformation process, damage localization 
occurs in a section of the laminate linking neighboring fiber/matrix failures and generating 
voids (equivalent to a continuum crack opening displacement COD) by the interface 
separation. A quasi-continuous crack is then developed by the coalescence of the interfacial 
voids and the subsequent plastic deformation and failure of the matrix ligaments between 
voids, (Figure 2(b) and (c)). After the localization, other interface cracks are closed as a result 
of the stress release around the formed crack. The tortuosity of the meandering crack path is 
strongly controlled by the local spatial distribution of the fibers within the RVE. 
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3.2. Multiple cracking 

 
The mechanical performance of the laminate is not strongly affected by the occurrence of the 
first microcrack. However, upon continue loading, the generation of new microcracks produce 
significant degradation of the in-plane thermomechanical properties of the composite 
laminate. The in-plane secant elastic modulus in the loading direction, xE , as well as the in-
plane Poisson ratio, xyν  evolve as a function of applied strain and the lay-up configuration. 
Under these conditions, the homogenized elastic constants for the cracked laminate are 
determined as: 
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where xσ  is the homogenized laminate stress for a given applied strain xε , while yε  is the 
out of xz  plane deformation obtained from the generalized plane strain condition used in the 
simulations. The results of the normalized in-plane elastic modulus are presented in Figure 
3(a) and Poisson ratio in Figure 3(b). They show reduction of the both parameters in all RVEs 
as the applied strain increases due to the microcracking taking place in the 90º plies. The 
thicker the 90º layer, the more noticeable is the degradation of the thermomechanical 
properties. 
 

(a)  (b) 

Figure 3. (a) Normalized in-plane elastic modulus, (b) and Poisson ratio evolution with the applied strain for the 
laminates [02,90n/2]s .   

 
4. Conclusions 

 
A computational micromechanics model was developed to analyze the matrix crack formation 
and evolution in fiber reinforced cross ply laminates following a [0º,90ºn/2]s stacking sequence 
being n=1/2, 1, 2 and 4. According to this modelling strategy, the supporting layers following 
the loading direction at 0º were modelled as homogenized solids with the corresponding 
elastic properties of the unidirectional composite lamina while the cracking layers at 90º were 
modelled using an specific computational micromechanics model with a detailed 
discretization of the actual composite microstructure. Fibers were distributed in the cracking 
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layers homogeneously and the solid formed by fibers, matrix and interfaces discretized with 
finite elements. Damage formation was allowed by the introduction of specific constitutive 
equations for fibres, matrix and interfaces. Matrix plasticity and damage as well as 
fiber/matrix debonding were introduced in the model with detailed constitutive equations 
which were the deformation and damage mechanisms responsible of the appearance of 
laminate matrix cracks. 
 
The mechanisms of crack formation were obtained and analyzed in detail and they contrast 
fairly well with the experimental trends observed in the literature. The macroscopic cracks, 
were generated by the coalescence of several fiber debondings which concentrated matrix 
damage in the remaining ligaments. The macroscopic crack progressed towards the 
supporting layers interface being the tortuosity of the crack more pronounced when dealing 
with thicker laminates. In this case, the crack branches prior to the arrival to the lamina 
interface. The subsequent matrix cracking is consistently captured by the model and follows 
the typical mechanisms reported with shear lag model. After the occurrence of matrix crack, 
the stress in the area is relaxed increasing the probability of matrix cracking in adjacent layers 
beyond the zone controlled by the shear lag recovery. 
 
References 
 
[1] J. Segurado, J. LLorca. A numerical approximation to the elastic properties of sphere-

reinforced composites, Journal of the Mechanics and Physics of Solids 50 (10):2107-
2121, 2002 

[2] L. Canal, C. Gonzalez, J. Molina-Aldaregua, J. Segurado, J. LLorca. Application of 
digital image correlation at the microscale in fiber-reinforced composites, Composites 
Part A (10), 1630-1638, 2012. 

[3] L. Canal, G. Gonzalez, J. Segurado, J. LLorca. Interply fracture of fiber reinforced: 
microscopic mechanisms and modeling, Composite science and technology 72 (11), 
1223-1232. 2012. 

[4] J. Lubliner,J. Oliver, S. Oller, E. Oñate, A plastic-damage model for concrete, 
International Journal of Solids Structures 25 (3). 299-326. 1989. 

[5] J. Lee, G. Fenves, Plastic-damage model for cyclic loading of concrete structures, Journal 
of Engineering Mechanics 124 (8) 892-900. 1998. 


