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Abstract 

An approximate solution for the stresses and displacements according to the theory of torsion 

with influence of shear is given. It is assumed that the normal stresses in the transverse 

direction are small compared to the normal stresses in the longitudinal direction that can be 

ignored in the stress-strain relations. The solution for the stresses and displacements are 

given in the analytic form. The unidirectional orthotropic beams with double symmetrical 

cross-section are considered. The results are compared to the finite element method on 

several examples. 

 

1. Introduction 

 

In classical theories of torsion of thin-walled beams with open section the warping of the 

cross-sections due to shear is neglected [1-4]. By analogy to advanced theories of bending, in 

an engineering approach [5-11], the concept of shear factors is considered [12-20]. The 

solution for the stresses and displacement according to the theory of torsion with influence of 

shear [12-22] will be applied for orthotropic thin-walled beams. Poltruded beams are 

orthotropic with principal direction along and normal to the beam longitudinal axis, and  can 

be considered as “unidirectional orthotropic beams” [21-23]. Beams with cross-sections with 

two axes of symmetry are considered. Poisson’s effect is ignored, as well as the shear warping 

effect, defined by the “non-uniform warping torsion theory” [15]. 

 

2. Strains and displacements 

 

The displacement of an arbitrary point ( , )S x s  of the middle surface of thin-walled beam  of 

open cross-section with one axis of symmetry subjected torsion  can be expressed as 

 
0

d d
d

d d

s

S x

v
u y s

x x



        (1) 

where ( )x   is the angle of torsion, i.e. the rotation of the cross-section middle line as a 

rigid line with respect to a cross-section pole P in the axis of symmetry, ( )v v x  is the 

displacement of the pole P in the y-direction, ( )y y s is orthogonal coordinate, 

( , )x x x s    is the shear strain is the cross-section area in the  -direction, s is the 
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curvilinear coordinate of the middle line,  is the tangential axis on the curvilinear coordinate 

s; Oxyz is the orthogonal coordinate system, where the z-axis is  the axis of symmetry (Fig1); 

 
0

d
s

Ph s   ,    d dPh s  ,  (2) 

where ( )s   is the  sectorial coordinate for the pole P and ( )P Ph h s  is the distance of the 

tangent through the arbitrary point S at middle line from the pole P. 

 

Figure 1. Portion of the cross-section middle line 

 

Here  ( 0) 0s   .   Eq. (1) may be expressed as 

 
0

d
s

S xu y s      ,  d dx    ,   d dv x  ;  (3) 

where ( )x  is the relative angular displacement of the middle line as rigid line with 

respect to the pol P and ( )x  is angular displacement of the middle line as rigid line with 

respect  to the z-axis; 

 t a    ,    av v ,  (4) 

where ( )t t x   is the angular displacement of  the cross-sections as plane sections with 

respect to the pole P , as in the case of classical theories of thin-walled beams of open cross-

sections, ( )a a x   and ( )a av v x  are  the additional displacements due to shear; 

 t a    ,    a  ,    d dt t x   ,    d da a x   .  (5) 

The strain in the beam longitudinal direction may then be expressed as 

 
2 2

2 2 0

d d
d

d d

s
x

x

u v
y s

x x x x


 


    
    (6) 

 

3. Stresses and displacements 

 

Hooke’s law for the plane stress condition and unidirectional lamina can be expressed as 

 1 1 2 12 2
1

21 121

E E
, 2 2 2 12 1

2

21 121

E E
, 12 1

21 2

E

E
, 12 12 12G   (7) 

where 1  and 2  are the normal stresses in the major (1) and minor (2) directions, 

respectively; 1  and 2  are the normal strains; 1E and 2E  are the moduli of elasticity; 12 is 

the major Poisson’s ratio; 12  is the shear stress and 12G is the shear modulus. From Eqs (6) 

 1 1 1E f ,  

1

2
12

1

1f .  (8) 
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The function f can be estimated, for example, by using the solution for a strip under self-

equilibrated linearly distributed loads along the strip longitudinal edges, for the maximal 

normal stresses [24] 

 
2

2 1
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12

2
1 2

3

m

E
m

G

 




 

  
 

,   
2

2 1 .
24

1
3

iso

m

m

  



,  
b

m
l

 ,  (9) 

for the orthotropic and isotropic material, respectively; where l is the strip length and b the 

breadth. For 1E  53.78 GPa, 12G 8.96 GPa, 12    0.25 (glass/epoxy [24]), the function 

f is calculated and presented in Tab. 1. 

 

l/b σ2/ σ1 (σ2/ σ1)iso.  f fiso. 

3 0.0393 0.0909 1.0110 1.0261 

5 0.0241 0.0380 1.0068 1.0107 

Table 1. The function f , given by (7) and (8), for orthotropic and isotropic material, respectively 

 

The function f, as it is shown, is very closed to one, even for extremely low l b ratios. Thus, 

the Hooke’s law for unidirectional laminas can be expressed as 

 x x xE , x xG ,  (10) 

where 1( , )x x x s    , 1xE E , 12( , )x x x s      and 12G G . From Eqs. (5) and (9) 

 
2

2 0

d d
d

d d

s
xx

x x x

v E
E E s

x x G x


 


   

 .  (11) 

From the equilibrium of a differential portion of the beam wall 

 
0

( )1
d ( )

s
x

x

t
s g x

t x





 
    

 ,  M(M) ( ,M) ( )xg t x T x   ,  (12) 

where ( )t t s  is the wall thickness. If .x x const   , referring to Eqs. (11) and (12)  

3 3

3 2

1 d d
( ) ( )

d d
x M x z

v
T E S s S s

t x x
 



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    

  
, 

0
( ) d

s

zS s y A  , 
0

( ) d
s

S s A   , d dA t s   (13) 

3 3

3 3

d d

d d

x
x z

E v
S S

t x x
 


   

   
 
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s

S y A


   , 
0

( ) d
s

S s A    , d dA t s  , d ds s     (14) 

where ( )z zS S s  is the moment of the cut-of portion of area with respect to the z -axis, 

( )S S s 
  is the moment of the cut-of portion of area with respect to the sectorial coordinate 

 , s is the curvilinear coordinate of the cut-of portion of the beam wall area, from the free 

edge, i.e. where 0x  . The St. Venant shear stress component ( , )V V
x x x s    may be 

included as 

 V t
x

t

M

I
  ,     

d

d

t
t t t tM GI GI

x


   ,       

31
d

3
t

L
I t s   ,  (15) 

where ( )t tM M x , and  is the axis orthogonal to the  -axis. 
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4. Equilibrium equations 

 

For a portion of the beam wall 

 
 

d d 0
x

x
L

t
F x s

x


 


  , 

  d
d d d d 0

d

x t
P P

L

t M
M x s x m x

x x


   


  ;  (16) 

where ( )P Pm m x  are the moments of torsion per unit length with respect to the pole P. 

Referring to Eqs.(11) and (13) 
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d d
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d d
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E I E I m

x x
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
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d

d

t
P

M
m m

x
   ; 

 
2dz

A

I y A  ,   
2d

A

I A   ,    dz y

A

I I y A     ,  (17) 

Due to symmetry  0z yI I   . Thus 

 
4

4

d
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d

v

x
 ,    

4

4

d

d
xE I m

x
 


 .  (18) 

 

5. Internal forces and stresses 

 

Integration of the shear stresses over the cross-sections gives 

 cos d 0x

A

A   ,       dx P

A

M h A     (19) 

where ( )M M x   is the warping moment. Substitution of Eq. (14) gives 

3

3

d
0

d

v

x
 , 

3

3

d

d
xM E I

x
 


  ; cos d cos d dA t s t y   , d 0z z

L
S I    , d

L
S I    (20) 

Referring to Eqs. (18) 

 d dM x m   .  (21) 

Thus, by substituting Eq.(14) into Eq. (20) 

 x

M S

I t

 







 .  (22) 

Integration of the normal stresses over the cross-sections gives 

 d 0x
A

y A  ,        dx
A

B A   ,  (23) 

where ( )B B x  is the bimoment. By substituting Eqs.(11) and (22) 

 
2

2

d
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d
x z z

v
E I M

x
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d

d
xB E I B

x






   ,  (24) 

where 
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 dx z
z
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   ,      

2
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 




 
  

 
 ,  (25) 

Due to symmetry d 0z

L

S S
s

t


 

 . Thus, 0zM  . Referring to Eqs. (18) and (20) 
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3
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v M
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  ,  
3

3

d d d

d d d
x
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E I M
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 


    ,  (26) 

 
4 2

4 2

d d d

d d d
x

B M
E I m

x x x


 


     .  (27) 

The normal stress given by Eq. (11), according to Eqs. (22) and (25), finally can be expressed 

 
0

d
s

x
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B B E m S
s

I I G I t



 

  

  


     .  (28) 

The component B   given by Eq. (25) can also be written as 

 x

P

E I
B m

GI

 
  ,    
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2
dP
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I S
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I t







 

  
 

 ,     2 dP P
A

I h A  ,  (29) 

where   is the shear factor with respect to the  -displacements; PI is the polar second 

moment of area. Then, the normal stress can be expressed as 

 
0

d
s

x x
x
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I GI GI t

 
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
  
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6. Differential equations with separated displacements 

 

Eqs. (24), according to Eqs. (29), can be expressed as 

 
2

2

d
0

d

v

x
 ,    

2

2

d

d x P

B
m

x E I GI







   .  (31) 

According to Eqs. (4) 
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2

d
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EIx 


  ,     

2

2

d

d

a

P

m
GIx




 
  .  (32) 

Integrating, taking into account Eqs. (5) and (21) 

 
d

d

a
a

P

M

x GI

  
   .  (33) 

Integration constants are ignored. It is assumed that the angular displacements a and a do  

not depend on the boundary conditions. Then 
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d d
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     ,  (34) 

Integrating the Eqs. (33) 
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 a

P

B C
GI

   .  (35) 

where C is integration constant. 

 

7. Boundary conditions 

 

For starting section A: 

 0a  ,      A

P

B
C

GI

  ,   
 A

t

P

B B

GI

 


  ,  (36) 

where AB is the bimoment at Ax x . For simply supported beams 

 
, ,

0
A B A

tx x x x B
 

 
   ,     

,

2 2d d 0
A B

t x x
x


       , 0A BB  ;  (37) 

For the clamped beams 

 0
A A

tx x x x
 
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t x x

x
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  2 2 2 2d d d d 0
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P

EI
x x

GI

 
   

   
     ,       d d 0

B
t x x

x


 .(38) 

8. Shear factors 

 

The normal stresses, according to Eq. (30), and the displacements, according to Eq. (36), can 

be expressed as  

 x

B

I
   ,      t  .  (39) 

where for beams loaded by uniformly distributed moments per unit length for the beam 

midspan 
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,  (40) 

for simply supported beams; 
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

  
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,  
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1 1
sinh 12

t P

P

I I bv
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
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2

t

x

l GI
v

E I
 , (41) 

for clamped beams. For simple double symmetrical cross-sections (Fig.2) 

 
6

,
5
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1
,
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2
1

1

2
PI A h ,  2 3 2

1 1

1
2

3
tI A t      (42) 

where 1 1 0 0 0 1, , ,A bt A ht A A b h     . 

 

Figure 2. Simple double symmetrical cross-sections 
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9. Illustrative examples 

 

The factors   and  , obtained analitically using Eqs. (38) and (40), for simply supported and 

clamped beams are compared with numerically obtained results by applying the finite element 

method using ADINA software. The results at the beam midspan are presented in Tab. 2 and 

Tab. 3. The 9-noded shell elements are used for the FEM analysis. The cross-section 

properties are defined according to Fig. 2: b = h = 100 mm, t0 = t1 = 5 mm. The distributed 

line load of 1 kN/m is applied to act as in-plane load at flanges of the cross-section. The 

material models are analysed with following properties: for orthotropic material (Ex = 53.78 

GPa, G = 8.96 GPa) and for isotropic material (E = 210 GPa,  0.3). The analyses are 

performed for two different beam lengths (l/b = 3 and l/b = 5). 

 

 Orthotropic Isotropic 

l/b 
Simply supported Clamped Simply supported Clamped 

(38) FEM (38) FEM (38)  FEM (38) FEM 

3 1.089 1.086 1.266 1.238 1.038 1.038 1.115 1.086 

5 1.032 1.029 1.096 1.082 1.014 1.013 1.041 1.026 

Table 2. The factors , according to (38), for orthotropic and isotropic material, respectively 

 

 Orthotropic Isotropic 

l/b 
Simply supported Clamped Simply supported Clamped 

(40)  FEM (40) FEM (40)  FEM (40) FEM 
3 1.640 1.655 4.202 4.110 1.277 1.292 2.388 2.354 
5 1.230 1.232 2.154 2.116 1.100 1.104 1.500 1.478 

Table 3. The factors , according to (40), for orthotropic and isotropic material, respectively 

 

10. Conclusion 

 

An analytical solution for torsion of thin-walled beams under the influence of shear for double 

symmetrical cross-sections is given.  The shear factors are given in the parametric form in 

order to compare the shear influence on the beam torsion both for orthotropic and isotropic 

materials. The shear influence in the case of unidirectional orthotropic beams is significant, 

and must be taken into account, even in the case of higher beam aspect ratios. Several 

examples are analysed in comparison with the finite element method. Excellent agreements of 

the results are obtained. 
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