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Abstract
The fibre paths of variable stiffness laminates are described through the fibre angles at the nodes
of a finite element (FE) representation of the structure. An algorithm is presented to optimise
the fibre angles efficiently. To reduce the number of required FE analyses a multi-level ap-
proach is used: the exact solution is first approximated in laminate stiffness space. The second
level approximation is a Gauss-Newton quadratic approximation in fibre-angle space. To en-
sure manufacturability, a steering constraint is introduced: the norm of the gradient of the fibre
angle distribution is constrained. Two formulations are proposed: either the average steering is
constrained; or the local element-wise steering is constrained. The resulting quadratically con-
strained quadratic optimisation problem is solved using an interior-point method. It is shown
that the local steering constraint performs best, at the cost of increasing the size of the problem.

1. Introduction

Today, composite materials are frequently used in the aviation industry and the first composite-
dominated planes like the B-787 or A400M are being built. Traditionally, the fibres within a
layer have the same orientation, leading to the same mechanical properties everywhere, named
constant stiffness composites. However, fibre placement machines have evolved and now it is
possible to vary the fibre orientation inside a layer leading to varying mechanical properties.
These composites will be referred to as variable stiffness laminates.

The following three-step approach is a proven method to optimise variable stiffness laminates.
The first step is to find the optimal stiffness distribution in terms of the lamination parameters.
This has been performed and is discussed in detail in [1, 2]. The second step is to find the
optimal manufacturable fibre angle distribution, the focus of this paper. The third and final step
is to retrieve manufacturable fibre paths from the fibre angle distribution [3]. This step will not
be discussed. A schematic overview of this approach can be seen in Figure 1.

This paper is organised as follows: first the problem formulation is discussed in section 2, next
the manufacturing constraints are discussed in section 3. The solution procedure is explained in
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Figure 1: schematic overview of the three-step approach

section 4, followed by the results in section 5 and finally the conclusion is given in section 6.

2. Problem formulation

In structural optimisation, the minimisation of an objective response (e.g., weight or compli-
ance) subject to performance constraints (e.g., on stresses or displacements) is studied. More
generally, the worst case response, for example in the case of multiple load cases, may be op-
timised. Additional constraints not related to structural responses may be added to guarantee
certain properties of the optimum, for example smoothness. Many of these additional con-
straints arise from manufacturing considerations. When optimising variable stiffness laminates,
a steering constraint is posed, leading to the following problem formulation:

min max( f1, f2, ..., fn)
s.t. fn+1, ..., fm ≤ 0

ς2 − ς2
U ≤ 0

(1)

where f1 up to fn denote structural responses that are optimised and fn+1 up to fm denote struc-
tural responses that are constrained; ς is the steering and ςU is the maximum allowed steering.

The structural responses, like buckling load, compliance and strength, are calculated in a finite
element (FE) environment. However, since each FE analysis is computationally expensive,
greater efficiency may be achieved by using structural approximations to reduce the number of
required FE analyses. The exact FE solution f is first approximated in terms of the in-plane
stiffness matrix A and out-of-plane stiffness matrix D and their reciprocals:

f ≈
∑

n

φm : A−1 + φb : D−1 + ψm : A + ψb : D (2)

where the : operator represents the Frobenius inner product, meaning A : B = tr(A · BT ); φ and
ψ are calculated from a sensitivity analysis, m denotes the membrane, b the bending part and
n runs over all the nodes. This function is computationally much cheaper to compute, but it is
not convex in fibre angle space. Hence, a second approximation in terms of the change in fibre
angles is made:

f ≈ f 0 +
∑

n

g · ∆θ + ∆θT · H · ∆θ (3)

where f 0 denotes the value, g the gradient and H the Gauss-Newton part of the Hessian of the
first approximation at the approximation point. This function is the only part that will be opti-
mised. Based on the outcome, the stiffness matrices of the first approximation are changed and
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the gradient and Hessian are updated for the next optimisation. When the first approximation
has converged, or a pre-set number of iterations is done, the FE analysis is done again, updating
the sensitivities of the first approximation.

This multi-level approach to solve the optimisation problem works well, but there is no guar-
antee of global convergence: it is not a given the approximation functions are conservative at
the next iterate, meaning the approximation is larger than the function approximated. To make
sure every step is an improvement step, it is tried to make every approximation conservative. To
achieve this, Svanberg proposed to add a function, called a damping function in the remainder
[4]. This damping function consists of the shape of the function and a damping factor. The
shape is chosen such that the function value and gradient at the approximation point are not
changed. The damping factor is used to control the step size: if it is too large, the next iterate
will be unconservative, if it is too small, a lot of iterations will be needed. This factor will be
updated after each iteration.

After updating the damping factor, whether the next iterate is an improvement of the approxi-
mated function is checked. If it is not an improvement, the point is rejected and the optimisation
is done again with the updated damping factor; if the next iterate is an improvement, the point is
accepted and the function value, gradient, and Hessian are updated using the first approximation
function.

3. Manufacturing constraints

To ensure the optimised laminate can be manufactured using fibre placement techniques, the
rate of change in fibre angles should not be too high. This has two physical reasons. One, the
fibre placement machine has to be able to follow the curvature of the fibre path without tow
wrinkling. Two, the convergence or divergence of fibres should not be excessive to avoid too
many gaps/overlaps. Hence, the norm of the gradient of the fibre angles, measuring the amount
of steering is constrained. There are two ways this can be done: either the average steering
is constrained, leading to one constraint per layer; or the local steering value is constrained,
leading to one constraint per finite element per layer. The local approach allows more precise
control of the steering at the cost of greatly increasing the number of constraints.

3.1. Global steering constraint

The steering ς is given by
ς2 = ∇θ · ∇θ (4)

The average steering can be found using

ς̄2 =
1
Ω

∫
Ω

ς2dΩ (5)

where Ω is the total area of all elements. This is rewritten as

ς2 =
2
Ω
· θT · L · θ (6)

where L is the standard FEM discretisation of the Laplacian.
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Using the global steering constraint has the advantage that only one constraint per layer is
posed. However, while the average steering of each layer is constrained, the maximum steering
is not taken into account. Hence, manufacturability is not guaranteed using the global steering
constraint. To guarantee manufacturability local constraints are applied as shown in the next
section.

3.2. Local steering constraint

When the local steering constraint is used, the steering of each element is constrained. It is
assumed the steering in each element is constant, hence this time the average over an element
is calculated. The steering of each element is calculated using

ς2 =
2
Ω
· θT · Le · θ (7)

where the subscript e denotes the element. For triangular elements this equation gives the exact
curvature, for 4-node elements, it is the average over the element.

4. Solution procedure

As seen previously in section 2, a multilevel approximation approach is adopted for the so-
lution of the optimisation problem. The crucial numerical component is the solution of the
optimisation problem (eq. 1) at the second level approximation (eq. 3). This is a quadratically
constrained optimisation problem the solution of which is the subject of this section. The so-
lution procedure will be explained for the local steering constraint. The same formulation will
work for the global curvature constraints. A flowchart of the algorithm can be found in Figure
2.

First, the optimisation problem is rewritten:

min z
s.t. fi · e − z ≤ 0

ς2 − ς2
U ≤ 0

(8)

where e is a vector consisting of only ones and zeros: one if the function is an objective, zero if
it is a constraint. The Lagrangian of the problem is

L(λo, λe, θ, z, so, se) = z +
∑

o

λo ·
(

f 0
o + go · ∆θ + ∆θT · Ho · ∆θ + so

)
+

1
2
· ∆θ ·

∑
e

λe · Le

 · ∆θ
−ς2

U ·

1
2
·
∑

e

λe · |Ωe|

 +
1
2
·

∑
e

λe · se · |Ωe|

 − µ · ∑
o

ln(so)
∑

e

|Ωe| · ln(se)


(9)

where λo denotes the Lagrangian multipliers of the structural responses and λe denotes the
Lagrangian multiplier of an element, which both have to be non-negative. The slack of the
structural responses and of the constraints are given by so and se respectively. The homotopy
factor is denoted by µ. Next, Newton’s method is used to find the optimality criteria with respect
to each variable. The next iterate is found by solving for these optimality criteria.
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Figure 2: flowchart of the optimisation

5. results

To demonstrate the proposed optimisation algorithm, consider the cylindrical panel with a hole
shown in Figure 3. Both length L and width W of the panel are 0.5 m, the radius of curvature
R is 0.75 m and the hole has a radius of 0.12 m. The panel is optimised for maximum buckling
load. To account for possible modal interactions the first two modes are considered. The straight
edges are simply supported, the curved edges are clamped. The panel is subjected to uni-axial
compression at the curved edges. The material used has an E1-modulus of 154 GPa, an E2-
modulus of 10.8 GPa, a shear modulus of 4.02 GPa, and a Poisson ratio of 0.317.

The laminate to be optimised consists of 16 layers in total, leading to a total thickness of 3.6
mm, by choosing the laminate to be balanced and symmetric only 4 layers need to be taken into
account during the optimisation. The results shown are normalised using the buckling load of a
quasi-isotropic (QI) laminate.

First the optimisation is performed in lamination parameter space. This shows that compared
to a QI laminate, the best constant stiffness laminates offers an increase of 20.1% in buckling
load; while using a variable stiffness laminate the buckling load can be increased by 98.3%.
Thus, optimally, steering may cause an up to 65% increase in performance compared to the best
constant stiffness laminate.
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Figure 3: graphical representation of the structure, loading and boundary condition

maximum maximum maximum maximum maximum number
global buckling buckling local local local local of FE
steering load 1 load 2 steering steering steering steering analyses

layer 1 layer 2 layer 3 layer 4
1 1.2558 1.2958 3.7961 2.5628 2.5377 2.5081 5
2 1.4641 1.5103 6.9759 5.2010 4.8976 5.0588 6
3 1.6177 1.7141 9.3337 8.0402 7.6818 8.0790 6
4 1.7481 1.8740 16.9370 11.1651 10.5510 11.6299 6
5 1.8130 1.9069 36.1727 27.5095 15.7851 14.5229 6

Table 1: Overview of the results using the global steering constraint

To optimise the fibre angles, first, the global steering constraint is used. In Table 1, the first
column gives the maximal average steering, the next two columns give the buckling load nor-
malised with respect to the QI buckling load, the next four columns give the maximal steering
observed in each layer. The final column gives the number of FE analyses that were needed.
The results are as expected: the higher the allowed steering, the higher the buckling load. Fur-
thermore, the first two buckling modes are close but not identical; for the optimum in lamination
parameter space they were equal. The number of FE analyses is low compared to the number
of times the first approximation is evaluated, which is around 40 times for all cases. The most
important result, however, is that the maximum local steering in the different layers is much
higher than the allowed global steering, and no relationship between them can be found. These
high maximum local steering values may cause manufacturing problems.

To compare the local and global steering constraints, the maximum local steering found for the
global steering is set as local steering constraint. From a manufacturing point of view this is
more realistic: if this steering can be laid down locally, it is possible at all places so there is no
need to constrain steering at other places to be lower. In Table 2, the global steering constraint
is shown in the first column, the next two columns give the optimal buckling loads found nor-
malised with respect to the quasi-isotropic design, the fourth column gives the maximal local
steering found, the next two columns give the optimal buckling load found using the local steer-
ing constraint; finally the last two columns compare the buckling loads and the number of FE
analyses necessary. The local steering constraint always leads to a better result, although the
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maximum maximum difference difference
global buckling buckling local buckling buckling local Vs in FE

steering load 1 load 2 steering load 1 load 2 global analyses
1 1.2558 1.2958 3.7961 1.5603 1.6370 + 24.2% 0
2 1.4641 1.5103 6.9759 1.7939 1.8751 + 22.5% 0
3 1.6177 1.7141 9.3337 1.8584 1.9424 + 14.9% 0
4 1.7481 1.8740 16.9370 1.9428 2.0317 + 11.1% +1
5 1.8130 1.9069 36.1727 1.9635 2.0430 + 8.3% +1

Table 2: Overview of the results using the local steering constraint of the optimum obtained
using the global constraint

(a) fibre paths of layer 1 and 2 (outer layers) (b) fibre paths of layer 3 and 4

(c) fibre paths of layer 5 and 6 (d) fibre paths of layer 7 and 8 (at symmetry plane)

Figure 4: fibre paths optimised using local steering constraints

difference gets smaller for larger global steering. This is due to the limited improvement that
can be made at a certain time, one also notices this when the global steering constraint is used:
the difference between a maximum steering of 4 and 5 is small, while the difference between
1 and 2 is considerably larger. Using the maximum local steering constraint of 36.1727, the
steering constraint was never active; the maximum steering was just below 30. Furthermore,
the theoretical optimum in lamination parameter space is 1.983, hence the buckling load found
in lamination parameter space is only 1% higher than the buckling load of the laminate found.
The small difference in buckling load is due to the constraint that only 16 layers are used, not
due to the steering constraint.

For the case where the maximum local steering is set to 3.7961, the top view of the fibre paths
are shown in Figure 4. In this figure, both the layer and its balanced counterpart are shown.
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6. conclusion

A method has been developed to optimise the stacking sequences of variable stiffness lami-
nates. The stacking sequences are defined at the finite element nodes using a vector of fibre
angles. This direct parametrisation in terms of fibre angle results directly in the information
needed to determine the fibre paths and hence to manufacture the laminates. Additional steer-
ing constraints are imposed on the norm of the gradient to assure the smoothness, and, hence,
the manufacturability, of the fibre angle distributions. The method offers true stacking sequence
optimisation.

To reduce computational time a multi-level approach was used: the result of the FE analysis was
used to build an approximation function in terms of the in-plane and bending stiffness matrices,
which was consecutively used to build a second approximation in terms of the change in fibre
angles. To ensure each step is an improvement step and let the approximation be conservative,
a damping function was added to the approximations. This approach has been proven to work
well: a limited number of FE analyses was needed to find the optimum fibre angle distribution
while the first, computationally cheaper, approximation was frequently evaluated.

The initial results indicate the effectiveness of the proposed method. When manufacturing con-
straints are inactive, the obtained optimum matches the performance found in lamination param-
eter space. When the manufacturing constraints are active, the use of local steering constraints
resulted in improved optima compared to the use of average, per layer, steering constraints.

The current algorithm does not allow thickness change: the number of layers used in the optimi-
sation is pre-specified by the user. The capability to change the laminate thickness and steering
will be addressed in future work.
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